Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2003, Volume 241, Pages 90–104 (Mi tm389)  

This article is cited in 10 scientific papers (total in 10 papers)

Homomorphisms of Hyperelliptic Jacobians

Yu. G. Zarhinab

a Institute of Mathematical Problems of Biology, Russian Academy of Sciences
b Pennsylvania State University
References:
Abstract: Let $K$ be a field of characteristic different from $2$ and $K_a$ be its algebraic closure. Let $n\ge 5$ and $m\ge 5$ be integers. Assume, in addition, that if $K$ has positive characteristic, then $n\ge 9$. Let $f(x),h(x)\in K[x]$ be irreducible separable polynomials of degree $n$ and $m$, respectively. Suppose that the Galois group of $f$ is either the full symmetric group $\mathbf S_n$ or the alternating group $\mathbf A_n$ and the Galois group of $h$ is either the full symmetric group $\mathbf S_m$ or the alternating group $\mathbf A_m$. Let us consider the hyperelliptic curves $C_f\colon y^2=f(x)$ and $C_h\colon y^2=h(x)$. Let $J(C_f)$ be the Jacobian of $C_f$ and $J(C_h)$ be the Jacobian of $C_h$. Earlier, the author proved that $J(C_f)$ is an absolutely simple abelian variety without nontrivial endomorphisms over $K_a$. In the present paper, we prove that $J(C_f)$ and $J(C_h)$ are not isogenous over $K_a$ if the splitting fields of $f$ and $h$ are linearly disjoint over $K$.
Received in December 2002
Bibliographic databases:
UDC: 512.7
Language: Russian
Citation: Yu. G. Zarhin, “Homomorphisms of Hyperelliptic Jacobians”, Number theory, algebra, and algebraic geometry, Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 241, Nauka, MAIK «Nauka/Inteperiodika», M., 2003, 90–104; Proc. Steklov Inst. Math., 241 (2003), 79–92
Citation in format AMSBIB
\Bibitem{Zar03}
\by Yu.~G.~Zarhin
\paper Homomorphisms of Hyperelliptic Jacobians
\inbook Number theory, algebra, and algebraic geometry
\bookinfo Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich
\serial Trudy Mat. Inst. Steklova
\yr 2003
\vol 241
\pages 90--104
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm389}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2024045}
\zmath{https://zbmath.org/?q=an:1077.14041}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2003
\vol 241
\pages 79--92
Linking options:
  • https://www.mathnet.ru/eng/tm389
  • https://www.mathnet.ru/eng/tm/v241/p90
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :138
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024