Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2003, Volume 241, Pages 68–89 (Mi tm388)  

This article is cited in 11 scientific papers (total in 11 papers)

Discrete Convexity and Hermitian Matrices

V. I. Danilov, G. A. Koshevoy

Central Economics and Mathematics Institute, RAS
References:
Abstract: The question (Horn problem) about the spectrum of the sum of two real symmetric (or complex Hermitian) matrices with given spectra is considered. This problem was solved by A. Klyachko. We suggest a different formulation of the solution to the Horn problem with a significantly more elementary proof. Our solution is that the existence of the required triple of matrices $(A,B,C)$ for given spectra $(\alpha,\beta,\gamma)$ is equivalent to the existence of a so-called discrete concave function on the triangular grid $\Delta(n)$ with boundary increments $\alpha$,$\beta$, and $\gamma$. In addition, we propose a hypothetical explanation for the relation between Hermitian matrices and discrete concave functions. Namely, for a pair $(A,B)$ of Hermitian matrices, we construct a certain function $\phi (A,B;\cdot)$ on the grid $\Delta(n)$. Our conjecture is that this function is discrete concave, which is confirmed in several special cases.
Received in November 2002
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: V. I. Danilov, G. A. Koshevoy, “Discrete Convexity and Hermitian Matrices”, Number theory, algebra, and algebraic geometry, Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 241, Nauka, MAIK «Nauka/Inteperiodika», M., 2003, 68–89; Proc. Steklov Inst. Math., 241 (2003), 58–78
Citation in format AMSBIB
\Bibitem{DanKos03}
\by V.~I.~Danilov, G.~A.~Koshevoy
\paper Discrete Convexity and Hermitian Matrices
\inbook Number theory, algebra, and algebraic geometry
\bookinfo Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich
\serial Trudy Mat. Inst. Steklova
\yr 2003
\vol 241
\pages 68--89
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm388}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2024044}
\zmath{https://zbmath.org/?q=an:1071.15019}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2003
\vol 241
\pages 58--78
Linking options:
  • https://www.mathnet.ru/eng/tm388
  • https://www.mathnet.ru/eng/tm/v241/p68
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:949
    Full-text PDF :343
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024