|
This article is cited in 1 scientific paper (total in 1 paper)
Problem of the motion of an elastic medium formed at the solidification front
A. G. Kulikovskiia, E. I. Sveshnikovab a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
Abstract:
The following self-similar problem is considered. At the initial instant of time, a phase transformation front starts moving at constant velocity from a certain plane (which will be called a wall or a piston, depending on whether it is assumed to be fixed or movable); at this front, an elastic medium is formed as a result of solidification from a medium without tangential stresses. On the wall, boundary conditions are defined for the components of velocity, stress, or strain. Behind the solidification front, plane nonlinear elastic waves can propagate in the medium formed, provided that the velocities of these waves are less than the velocity of the front. The medium formed is assumed to be incompressible, weakly nonlinear, and with low anisotropy. Under these assumptions, the solution of the self-similar problem is described qualitatively for arbitrary parameters appearing in the statement of the problem. The study is based on the authors' previous investigation of solidification fronts whose structure is described by the Kelvin–Voigt model of a viscoelastic medium.
Received: October 16, 2017
Citation:
A. G. Kulikovskii, E. I. Sveshnikova, “Problem of the motion of an elastic medium formed at the solidification front”, Modern problems and methods in mechanics, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Leonid Ivanovich Sedov, Trudy Mat. Inst. Steklova, 300, MAIK Nauka/Interperiodica, Moscow, 2018, 95–108; Proc. Steklov Inst. Math., 300 (2018), 86–99
Linking options:
https://www.mathnet.ru/eng/tm3868https://doi.org/10.1134/S0371968518010077 https://www.mathnet.ru/eng/tm/v300/p95
|
Statistics & downloads: |
Abstract page: | 307 | Full-text PDF : | 61 | References: | 44 | First page: | 8 |
|