Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 300, Pages 95–108
DOI: https://doi.org/10.1134/S0371968518010077
(Mi tm3868)
 

This article is cited in 1 scientific paper (total in 1 paper)

Problem of the motion of an elastic medium formed at the solidification front

A. G. Kulikovskiia, E. I. Sveshnikovab

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
Full-text PDF (207 kB) Citations (1)
References:
Abstract: The following self-similar problem is considered. At the initial instant of time, a phase transformation front starts moving at constant velocity from a certain plane (which will be called a wall or a piston, depending on whether it is assumed to be fixed or movable); at this front, an elastic medium is formed as a result of solidification from a medium without tangential stresses. On the wall, boundary conditions are defined for the components of velocity, stress, or strain. Behind the solidification front, plane nonlinear elastic waves can propagate in the medium formed, provided that the velocities of these waves are less than the velocity of the front. The medium formed is assumed to be incompressible, weakly nonlinear, and with low anisotropy. Under these assumptions, the solution of the self-similar problem is described qualitatively for arbitrary parameters appearing in the statement of the problem. The study is based on the authors' previous investigation of solidification fronts whose structure is described by the Kelvin–Voigt model of a viscoelastic medium.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00180
15-01-00361
This work was supported by the Russian Foundation for Basic Research, project nos. 17-01-00180 and 15-01-00361.
Received: October 16, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 300, Pages 86–99
DOI: https://doi.org/10.1134/S0081543818010078
Bibliographic databases:
Document Type: Article
UDC: 539.3+534.1
Language: Russian
Citation: A. G. Kulikovskii, E. I. Sveshnikova, “Problem of the motion of an elastic medium formed at the solidification front”, Modern problems and methods in mechanics, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Leonid Ivanovich Sedov, Trudy Mat. Inst. Steklova, 300, MAIK Nauka/Interperiodica, Moscow, 2018, 95–108; Proc. Steklov Inst. Math., 300 (2018), 86–99
Citation in format AMSBIB
\Bibitem{KulSve18}
\by A.~G.~Kulikovskii, E.~I.~Sveshnikova
\paper Problem of the motion of an elastic medium formed at the solidification front
\inbook Modern problems and methods in mechanics
\bookinfo Collected papers. On the occasion of the 110th anniversary of the birth of Academician Leonid Ivanovich Sedov
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 300
\pages 95--108
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3868}
\crossref{https://doi.org/10.1134/S0371968518010077}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801038}
\elib{https://elibrary.ru/item.asp?id=32659278}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 300
\pages 86--99
\crossref{https://doi.org/10.1134/S0081543818010078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433127500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047527655}
Linking options:
  • https://www.mathnet.ru/eng/tm3868
  • https://doi.org/10.1134/S0371968518010077
  • https://www.mathnet.ru/eng/tm/v300/p95
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :61
    References:44
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024