Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 300, Pages 146–157
DOI: https://doi.org/10.1134/S0371968518010119
(Mi tm3854)
 

This article is cited in 2 scientific papers (total in 2 papers)

Couette flow of a viscoelastic Maxwell-type medium with two relaxation times

V. Yu. Liapidevskiiab

a Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, pr. Lavrent'eva 15, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
Full-text PDF (263 kB) Citations (2)
References:
Abstract: A Couette flow of a viscoelastic medium is considered that is described by the Johnson–Segalman–Oldroyd model with two relaxation times. The development of singularities related to the appearance of internal discontinuities is studied both analytically and numerically within one-dimensional nonstationary hyperbolic models of viscoelastic Maxwell-type media. A numerical model for calculating nonstationary one-dimensional discontinuous solutions is constructed, discontinuous solutions are studied, and the hysteresis phenomenon, i.e., the dependence of the structure of a steady Couette flow on the prehistory of its formation, is analyzed.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00127
This work was supported by the Russian Foundation for Basic Research, project no. 16-01-00127.
Received: September 1, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 300, Pages 137–148
DOI: https://doi.org/10.1134/S008154381801011X
Bibliographic databases:
Document Type: Article
UDC: 532.135+532.137
Language: Russian
Citation: V. Yu. Liapidevskii, “Couette flow of a viscoelastic Maxwell-type medium with two relaxation times”, Modern problems and methods in mechanics, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Leonid Ivanovich Sedov, Trudy Mat. Inst. Steklova, 300, MAIK Nauka/Interperiodica, Moscow, 2018, 146–157; Proc. Steklov Inst. Math., 300 (2018), 137–148
Citation in format AMSBIB
\Bibitem{Lya18}
\by V.~Yu.~Liapidevskii
\paper Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times
\inbook Modern problems and methods in mechanics
\bookinfo Collected papers. On the occasion of the 110th anniversary of the birth of Academician Leonid Ivanovich Sedov
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 300
\pages 146--157
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3854}
\crossref{https://doi.org/10.1134/S0371968518010119}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3801042}
\elib{https://elibrary.ru/item.asp?id=32659282}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 300
\pages 137--148
\crossref{https://doi.org/10.1134/S008154381801011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433127500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047568502}
Linking options:
  • https://www.mathnet.ru/eng/tm3854
  • https://doi.org/10.1134/S0371968518010119
  • https://www.mathnet.ru/eng/tm/v300/p146
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :99
    References:38
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024