Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 299, Pages 203–218
DOI: https://doi.org/10.1134/S0371968517040136
(Mi tm3846)
 

Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity

Jan Moser

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina M105, 842 48 Bratislava, Slovakia
References:
Abstract: In our previous papers, within the theory of the Riemann zeta-function we have introduced the following notions: Jacob's ladders, oscillating systems, $\zeta $-factorization, metamorphoses, etc. In this paper we obtain a $\zeta $-analogue of an elementary trigonometric identity and other interactions between oscillating systems.
Keywords: Riemann zeta-function.
Received: January 11, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 299, Pages 189–204
DOI: https://doi.org/10.1134/S0081543817080132
Bibliographic databases:
Document Type: Article
UDC: 511.331
Language: Russian
Citation: Jan Moser, “Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity”, Analytic number theory, On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba, Trudy Mat. Inst. Steklova, 299, MAIK Nauka/Interperiodica, Moscow, 2017, 203–218; Proc. Steklov Inst. Math., 299 (2017), 189–204
Citation in format AMSBIB
\Bibitem{Mos17}
\by Jan~Moser
\paper Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity
\inbook Analytic number theory
\bookinfo On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 299
\pages 203--218
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3846}
\crossref{https://doi.org/10.1134/S0371968517040136}
\elib{https://elibrary.ru/item.asp?id=32543418}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 299
\pages 189--204
\crossref{https://doi.org/10.1134/S0081543817080132}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425317900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042145846}
Linking options:
  • https://www.mathnet.ru/eng/tm3846
  • https://doi.org/10.1134/S0371968517040136
  • https://www.mathnet.ru/eng/tm/v299/p203
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :25
    References:23
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024