Abstract:
We review some ergodic and topological aspects of robustly transitive partially hyperbolic diffeomorphisms with one-dimensional center direction. We also discuss step skew-product maps whose fiber maps are defined on the circle which model such dynamics. These dynamics are genuinely nonhyperbolic and exhibit simultaneously ergodic measures with positive, negative, and zero exponents as well as intermingled horseshoes having different types of hyperbolicity. We discuss some recent advances concerning the topology of the space of invariant measures and properties of the spectrum of Lyapunov exponents.
The research was supported in part by CNE-FAPERJ and CNPq grants, Brazil (LD and KG), National Science Centre grant 2014/13/B/ST1/01033, Poland (MR), and EU Marie-Curie IRSES “Brazilian–European partnership in Dynamical Systems” (FP7-PEOPLE-2012-IRSES 318999 BREUDS).
Citation:
L. J. Díaz, K. Gelfert, M. Rams, “Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products”, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Trudy Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 113–132; Proc. Steklov Inst. Math., 297 (2017), 98–115
\Bibitem{DiaGelRam17}
\by L.~J.~D{\'\i}az, K.~Gelfert, M.~Rams
\paper Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products
\inbook Order and chaos in dynamical systems
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 297
\pages 113--132
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3841}
\crossref{https://doi.org/10.1134/S0371968517020066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559167}
\elib{https://elibrary.ru/item.asp?id=29859492}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 297
\pages 98--115
\crossref{https://doi.org/10.1134/S008154381704006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410199700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029166621}
Linking options:
https://www.mathnet.ru/eng/tm3841
https://doi.org/10.1134/S0371968517020066
https://www.mathnet.ru/eng/tm/v297/p113
This publication is cited in the following 6 articles:
L. J. Díaz, K. Gelfert, M. Rams, “Mingled hyperbolicities: Ergodic properties and bifurcation phenomena (an approach using concavity)”, Discrete and Continuous Dynamical Systems, 42:11 (2022), 5309
G. S. Osipenko, “Encodings of trajectories and invariant measures”, Sb. Math., 211:7 (2020), 1041–1064
L. J. Diaz, K. Gelfert, B. Santiago, “Weak and entropy approximation of nonhyperbolic measures: a geometrical approach”, Math. Proc. Camb. Philos. Soc., 169:3 (2020), 507–545
L. J. Diaz, K. Gelfert, M. Rams, “Entropy spectrum of lyapunov exponents for nonhyperbolic step skew-products and elliptic cocycles”, Commun. Math. Phys., 367:2 (2019), 351–416
Oliveira E.R., “On the Connection Between a Skew Product Ifs and the Ergodic Optimization For a Finite Family of Potentials”, Dynam. Syst., 34:4 (2019), 685–709
L. J. Diaz, K. Gelfert, T. Marcarini, M. Rams, “The structure of the space of ergodic measures of transitive partially hyperbolic sets”, Mon.heft. Math., 190:3 (2019), 441–479