Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 299, Pages 192–202
DOI: https://doi.org/10.1134/S0371968517040124
(Mi tm3831)
 

This article is cited in 2 scientific papers (total in 2 papers)

A few factors from the Euler product are sufficient for calculating the zeta function with high precision

Yu. V. Matiyasevich

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, nab. Fontanki 27, St. Petersburg, 191023 Russia
References:
Abstract: The paper demonstrates by numerical examples a nontraditional way to get high precision values of Riemann's zeta function inside the critical strip by using the functional equation and the factors from the Euler product corresponding to a very small number of primes. For example, the three initial primes produce more than 50 correct decimal digits of $\zeta (1/4+10\kern 1pt\mathrm i)$.
Keywords: Riemann's zeta function, functional equation, Euler product.
Received: January 30, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 299, Pages 178–188
DOI: https://doi.org/10.1134/S0081543817080120
Bibliographic databases:
Document Type: Article
UDC: 511.331
Language: Russian
Citation: Yu. V. Matiyasevich, “A few factors from the Euler product are sufficient for calculating the zeta function with high precision”, Analytic number theory, On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba, Trudy Mat. Inst. Steklova, 299, MAIK Nauka/Interperiodica, Moscow, 2017, 192–202; Proc. Steklov Inst. Math., 299 (2017), 178–188
Citation in format AMSBIB
\Bibitem{Mat17}
\by Yu.~V.~Matiyasevich
\paper A few factors from the Euler product are sufficient for calculating the zeta function with high precision
\inbook Analytic number theory
\bookinfo On the occasion of the 80th anniversary of the birth of Anatolii Alekseevich Karatsuba
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 299
\pages 192--202
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3831}
\crossref{https://doi.org/10.1134/S0371968517040124}
\elib{https://elibrary.ru/item.asp?id=28905731}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 299
\pages 178--188
\crossref{https://doi.org/10.1134/S0081543817080120}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425317900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042141273}
Linking options:
  • https://www.mathnet.ru/eng/tm3831
  • https://doi.org/10.1134/S0371968517040124
  • https://www.mathnet.ru/eng/tm/v299/p192
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:364
    Full-text PDF :83
    References:44
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024