Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 298, Pages 185–215
DOI: https://doi.org/10.1134/S037196851703013X
(Mi tm3829)
 

This article is cited in 9 scientific papers (total in 9 papers)

On a Vector Potential-Theory Equilibrium Problem with the Angelesco Matrix

V. G. Lysovab, D. N. Tulyakovb

a Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia
b Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
Full-text PDF (415 kB) Citations (9)
References:
Abstract: Vector logarithmic-potential equilibrium problems with the Angelesco interaction matrix are considered. Solutions to two-dimensional problems in the class of measures and in the class of charges are studied. It is proved that in the case of two arbitrary real intervals, a solution to the problem in the class of charges exists and is unique. The Cauchy transforms of the components of the equilibrium charge are algebraic functions whose degree can take values $2$, $3$, $4$, and $6$ depending on the arrangement of the intervals. A constructive method for finding the vector equilibrium charge in an explicit form is presented, which is based on the uniformization of an algebraic curve. An explicit form of the vector equilibrium measure is found under some constraints on the arrangement of the intervals.
Keywords: vector equilibrium problem, Angelesco interaction matrix, logarithmic potential, extremal measure, algebraic functions, uniformization of an algebraic curve.
Funding agency Grant number
Russian Science Foundation 14-21-00025
This work is supported by the Russian Science Foundation under grant 14-21-00025.
Received: February 16, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 298, Pages 170–200
DOI: https://doi.org/10.1134/S008154381706013X
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: V. G. Lysov, D. N. Tulyakov, “On a Vector Potential-Theory Equilibrium Problem with the Angelesco Matrix”, Complex analysis and its applications, Collected papers. On the occasion of the centenary of the birth of Boris Vladimirovich Shabat, 85th anniversary of the birth of Anatoliy Georgievich Vitushkin, and 85th anniversary of the birth of Andrei Aleksandrovich Gonchar, Trudy Mat. Inst. Steklova, 298, MAIK Nauka/Interperiodica, Moscow, 2017, 185–215; Proc. Steklov Inst. Math., 298 (2017), 170–200
Citation in format AMSBIB
\Bibitem{LysTul17}
\by V.~G.~Lysov, D.~N.~Tulyakov
\paper On a Vector Potential-Theory Equilibrium Problem with the Angelesco Matrix
\inbook Complex analysis and its applications
\bookinfo Collected papers. On the occasion of the centenary of the birth of Boris Vladimirovich Shabat, 85th anniversary of the birth of Anatoliy Georgievich Vitushkin, and 85th anniversary of the birth of Andrei Aleksandrovich Gonchar
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 298
\pages 185--215
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3829}
\crossref{https://doi.org/10.1134/S037196851703013X}
\elib{https://elibrary.ru/item.asp?id=30727072}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 298
\pages 170--200
\crossref{https://doi.org/10.1134/S008154381706013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416139300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85036640188}
Linking options:
  • https://www.mathnet.ru/eng/tm3829
  • https://doi.org/10.1134/S037196851703013X
  • https://www.mathnet.ru/eng/tm/v298/p185
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :48
    References:42
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024