Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 298, Pages 127–138
DOI: https://doi.org/10.1134/S0371968517030098
(Mi tm3815)
 

This article is cited in 1 scientific paper (total in 1 paper)

Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere

V. I. Zvonilova, S. Yu. Orevkovbcd

a Chukotka Branch of the North-Eastern Federal University, Studencheskaya ul. 3, Anadyr, Chukotka, 689000 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
c Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
d National Research University "Higher School of Economics," ul. Myasnitskaya 20, Moscow, 101000 Russia
Full-text PDF (246 kB) Citations (1)
References:
Abstract: For a closed oriented surface $\Sigma $ we define its degenerations into singular surfaces that are locally homeomorphic to wedges of disks. Let $X_{\Sigma ,n}$ be the set of isomorphism classes of orientation-preserving $n$-fold branched coverings $\Sigma \to S^2$ of the two-dimensional sphere. We complete $X_{\Sigma ,n}$ with the isomorphism classes of mappings that cover the sphere by the degenerations of $\Sigma $. In the case $\Sigma =S^2$, the topology that we define on the obtained completion $\overline {X}_{\!\Sigma ,n}$ coincides on $X_{S^2,n}$ with the topology induced by the space of coefficients of rational functions $P/Q$, where $P$ and $Q$ are homogeneous polynomials of degree $n$ on $\mathbb C\mathrm P^1\cong S^2$. We prove that $\overline {X}_{\!\Sigma ,n}$ coincides with the Diaz–Edidin–Natanzon–Turaev compactification of the Hurwitz space $H(\Sigma ,n)\subset X_{\Sigma ,n}$ consisting of isomorphism classes of branched coverings with all critical values being simple.
Funding agency Grant number
Russian Science Foundation 14-21-00053
The work of the second author is supported by the Russian Science Foundation under grant 14-21-00053.
Received: November 1, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 298, Pages 118–128
DOI: https://doi.org/10.1134/S0081543817060098
Bibliographic databases:
Document Type: Article
UDC: 515.179.25
Language: Russian
Citation: V. I. Zvonilov, S. Yu. Orevkov, “Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere”, Complex analysis and its applications, Collected papers. On the occasion of the centenary of the birth of Boris Vladimirovich Shabat, 85th anniversary of the birth of Anatoliy Georgievich Vitushkin, and 85th anniversary of the birth of Andrei Aleksandrovich Gonchar, Trudy Mat. Inst. Steklova, 298, MAIK Nauka/Interperiodica, Moscow, 2017, 127–138; Proc. Steklov Inst. Math., 298 (2017), 118–128
Citation in format AMSBIB
\Bibitem{ZvoOre17}
\by V.~I.~Zvonilov, S.~Yu.~Orevkov
\paper Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere
\inbook Complex analysis and its applications
\bookinfo Collected papers. On the occasion of the centenary of the birth of Boris Vladimirovich Shabat, 85th anniversary of the birth of Anatoliy Georgievich Vitushkin, and 85th anniversary of the birth of Andrei Aleksandrovich Gonchar
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 298
\pages 127--138
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3815}
\crossref{https://doi.org/10.1134/S0371968517030098}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3725052}
\elib{https://elibrary.ru/item.asp?id=30727068}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 298
\pages 118--128
\crossref{https://doi.org/10.1134/S0081543817060098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416139300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85036612357}
Linking options:
  • https://www.mathnet.ru/eng/tm3815
  • https://doi.org/10.1134/S0371968517030098
  • https://www.mathnet.ru/eng/tm/v298/p127
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :35
    References:34
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024