Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 298, Pages 101–111
DOI: https://doi.org/10.1134/S0371968517030074
(Mi tm3813)
 

This article is cited in 8 scientific papers (total in 8 papers)

Holomorphic Mappings of a Strip into Itself with Bounded Distortion at Infinity

V. V. Goryainov

Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia
Full-text PDF (190 kB) Citations (8)
References:
Abstract: A class of holomorphic self-mappings of a strip which is symmetric with respect to the real axis is studied. It is required that the mappings should boundedly deviate from the identity transformation on the real axis. Distortion theorems for this class of functions are obtained, and domains of univalence are found that arise for certain values of the parameter characterizing the deviation of the mappings from the identity transformation on the real axis.
Keywords: holomorphic mapping, fixed point, domains of univalence, angular derivative, distortion theorems.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00674-а
Ministry of Education and Science of the Russian Federation НШ-9110.2016.1
This work was supported by the Russian Foundation for Basic Research (project no. 16-01-00674-a) and by a grant of the President of the Russian Federation (project no. NSh-9110.2016.1).
Received: January 27, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 298, Pages 94–103
DOI: https://doi.org/10.1134/S0081543817060074
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. V. Goryainov, “Holomorphic Mappings of a Strip into Itself with Bounded Distortion at Infinity”, Complex analysis and its applications, Collected papers. On the occasion of the centenary of the birth of Boris Vladimirovich Shabat, 85th anniversary of the birth of Anatoliy Georgievich Vitushkin, and 85th anniversary of the birth of Andrei Aleksandrovich Gonchar, Trudy Mat. Inst. Steklova, 298, MAIK Nauka/Interperiodica, Moscow, 2017, 101–111; Proc. Steklov Inst. Math., 298 (2017), 94–103
Citation in format AMSBIB
\Bibitem{Gor17}
\by V.~V.~Goryainov
\paper Holomorphic Mappings of a Strip into Itself with Bounded Distortion at Infinity
\inbook Complex analysis and its applications
\bookinfo Collected papers. On the occasion of the centenary of the birth of Boris Vladimirovich Shabat, 85th anniversary of the birth of Anatoliy Georgievich Vitushkin, and 85th anniversary of the birth of Andrei Aleksandrovich Gonchar
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 298
\pages 101--111
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3813}
\crossref{https://doi.org/10.1134/S0371968517030074}
\elib{https://elibrary.ru/item.asp?id=30727066}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 298
\pages 94--103
\crossref{https://doi.org/10.1134/S0081543817060074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416139300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85036644444}
Linking options:
  • https://www.mathnet.ru/eng/tm3813
  • https://doi.org/10.1134/S0371968517030074
  • https://www.mathnet.ru/eng/tm/v298/p101
  • This publication is cited in the following 8 articles:
    1. O. S. Kudryavtseva, A. P. Solodov, “Tochnye oblasti odnolistnosti i odnolistnogo pokrytiya na klasse golomorfnykh otobrazhenii kruga v sebya s dvumya granichnymi nepodvizhnymi tochkami”, Matem. sb., 216:4 (2025), 44–66  mathnet  crossref
    2. O. S. Kudryavtseva, A. P. Solodov, “Univalent covering domain for a class of holomorphic self-maps of a disk with two boundary fixed points”, Math. Notes, 116:4 (2024), 858–861  mathnet  crossref  crossref
    3. V. V. Goryainov, O. S. Kudryavtseva, A. P. Solodov, “Estimate for domain of univalence on the class of holomorphic self-maps of a disc with two boundary fixed points”, Dokl. Math., 108:1 (2023), 326–330  mathnet  crossref  crossref  elib
    4. V. V. Goryainov, O. S. Kudryavtseva, A. P. Solodov, “Iterates of holomorphic maps, fixed points, and domains of univalence”, Russian Math. Surveys, 77:6 (2022), 959–1020  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. A. P. Solodov, “The exact domain of univalence on the class of holomorphic maps of a disc into itself with an interior and a boundary fixed points”, Izv. Math., 85:5 (2021), 1008–1035  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    6. O. S. Kudryavtseva, A. P. Solodov, “Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter”, Sb. Math., 211:11 (2020), 1592–1611  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimate of univalence domains of holomorphic mappings of the disc into itself with an invariant diameter”, Russian Math. (Iz. VUZ), 63:7 (2019), 80–83  mathnet  crossref  crossref  isi
    8. V. V. Goryainov, “Loewner-Kufarev equation for a strip with an analogue of hydrodynamic normalization”, Lobachevskii J. Math., 39:6 (2018), 759–766  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:1392
    Full-text PDF :527
    References:83
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025