Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 297, Pages 38–45
DOI: https://doi.org/10.1134/S0371968517020029
(Mi tm3799)
 

This article is cited in 1 scientific paper (total in 1 paper)

Erdős measures on the Euclidean space and on the group of $A$-adic integers

Z. I. Bezhaevaa, V. L. Kulikovb, E. F. Olekhovab, V. I. Oseledetsbc

a National Research University "Higher School of Economics", ul. Myasnitskaya 20, Moscow, 101000 Russia
b Financial University under the Government of the Russian Federation, Leningradskii pr. 49, Moscow, 125993 Russia
c Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
Full-text PDF (179 kB) Citations (1)
References:
Abstract: Let $A\in M_n(\mathbb Z)$ be a matrix with eigenvalues greater than $1$ in absolute value. The $\mathbb Z^n$-valued random variables $\xi_t$, $t\in\mathbb Z$, are i.i.d., and $P(\xi_t=j)=p_j$, $j\in\mathbb Z^n$, $0<p_0<1$, $\sum_j p_j=1$. We study the properties of the distributions of the $\mathbb R^n$-valued random variable $\zeta_1=\sum_{t=1}^\infty A^{-t}\xi_t$ and of the random variable $\zeta=\sum_{t=0}^\infty A^t\xi_{-t}$ taking integer $A$-adic values. We obtain a necessary and sufficient condition for the absolute continuity of these distributions. We define an invariant Erdős measure on the compact abelian group of $A$-adic integers. We also define an $A$-invariant Erdős measure on the $n$-dimensional torus. We show the connection between these invariant measures and functions of countable stationary Markov chains. In the case when $|\{j\colon p_j\ne 0\}|<\infty$, we establish the relation between these invariant measures and finite stationary Markov chains.
Received: December 16, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 297, Pages 28–34
DOI: https://doi.org/10.1134/S0081543817040022
Bibliographic databases:
Document Type: Article
UDC: 519.214.7+519.217.2
Language: Russian
Citation: Z. I. Bezhaeva, V. L. Kulikov, E. F. Olekhova, V. I. Oseledets, “Erdős measures on the Euclidean space and on the group of $A$-adic integers”, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Trudy Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 38–45; Proc. Steklov Inst. Math., 297 (2017), 28–34
Citation in format AMSBIB
\Bibitem{BezKulOle17}
\by Z.~I.~Bezhaeva, V.~L.~Kulikov, E.~F.~Olekhova, V.~I.~Oseledets
\paper Erd\H os measures on the Euclidean space and on the group of $A$-adic integers
\inbook Order and chaos in dynamical systems
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 297
\pages 38--45
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3799}
\crossref{https://doi.org/10.1134/S0371968517020029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3695405}
\elib{https://elibrary.ru/item.asp?id=29859488}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 297
\pages 28--34
\crossref{https://doi.org/10.1134/S0081543817040022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410199700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029182484}
Linking options:
  • https://www.mathnet.ru/eng/tm3799
  • https://doi.org/10.1134/S0371968517020029
  • https://www.mathnet.ru/eng/tm/v297/p38
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :29
    References:42
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024