|
This article is cited in 18 scientific papers (total in 18 papers)
Some applications of smooth bilinear forms with Kloosterman sums
V. Blomera, É. Fouvryb, E. Kowalskic, Ph. Micheld, Dj. Milićevićef a Mathematisches Institut, Universität Göttingen, Göttingen, Germany
b Laboratoire de Mathématiques d'Orsay, Université Paris–Saclay, Orsay Cedex, France
c Department of Mathematics, ETH Zürich, Zürich, Switzerland
d Chaire TAN, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
e Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA, USA
f Max-Planck-Institut für Mathematik, Bonn, Germany
Abstract:
We revisit a recent bound of I. Shparlinski and T. Zhang on bilinear forms with Kloosterman sums, and prove an extension for correlation sums of Kloosterman sums against Fourier coefficients of modular forms. We use these bounds to improve on earlier results on sums of Kloosterman sums along the primes and on the error term of the fourth moment of Dirichlet $L$-functions.
Received: May 6, 2016
Citation:
V. Blomer, É. Fouvry, E. Kowalski, Ph. Michel, Dj. Milićević, “Some applications of smooth bilinear forms with Kloosterman sums”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 24–35; Proc. Steklov Inst. Math., 296 (2017), 18–29
Linking options:
https://www.mathnet.ru/eng/tm3792https://doi.org/10.1134/S0371968517010022 https://www.mathnet.ru/eng/tm/v296/p24
|
|