|
This article is cited in 3 scientific papers (total in 3 papers)
Short cubic exponential sums over primes
Z. Kh. Rakhmonov, F. Z. Rahmonov Mathematics Institute and Computing Center, Academy of Sciences of the Republic of Tadzhikistan
Abstract:
For $y\ge x^{4/5}\mathscr L^{8B+151}$ (where $\mathscr L=\log (xq)$ and $B$ is an absolute constant), a nontrivial estimate is obtained for short cubic exponential sums over primes of the form $S_3(\alpha ;x,y) = \sum _{x-y<n\le x}\Lambda (n) e(\alpha n^3)$, where $\alpha =a/q+\theta /q^2$, $(a,q)=1$, $\mathscr L^{32(B+20)}<q\le y^5x^{-2}\mathscr L^{-32(B+20)}$, $|\theta |\le 1$, $\Lambda $ is the von Mangoldt function, and $e(t)=e^{2\pi it}$.
Received: May 6, 2016
Citation:
Z. Kh. Rakhmonov, F. Z. Rahmonov, “Short cubic exponential sums over primes”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 220–242; Proc. Steklov Inst. Math., 296 (2017), 211–233
Linking options:
https://www.mathnet.ru/eng/tm3774https://doi.org/10.1134/S0371968517010174 https://www.mathnet.ru/eng/tm/v296/p220
|
Statistics & downloads: |
Abstract page: | 325 | Full-text PDF : | 44 | References: | 52 | First page: | 7 |
|