Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 296, Pages 220–242
DOI: https://doi.org/10.1134/S0371968517010174
(Mi tm3774)
 

This article is cited in 3 scientific papers (total in 3 papers)

Short cubic exponential sums over primes

Z. Kh. Rakhmonov, F. Z. Rahmonov

Mathematics Institute and Computing Center, Academy of Sciences of the Republic of Tadzhikistan
Full-text PDF (291 kB) Citations (3)
References:
Abstract: For yx4/5L8B+151 (where L=log(xq) and B is an absolute constant), a nontrivial estimate is obtained for short cubic exponential sums over primes of the form S3(α;x,y)=xy<nxΛ(n)e(αn3), where α=a/q+θ/q2, (a,q)=1, L32(B+20)<qy5x2L32(B+20), |θ|1, Λ is the von Mangoldt function, and e(t)=e2πit.
Received: May 6, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 296, Pages 211–233
DOI: https://doi.org/10.1134/S0081543817010175
Bibliographic databases:
Document Type: Article
UDC: 511.325
Language: Russian
Citation: Z. Kh. Rakhmonov, F. Z. Rahmonov, “Short cubic exponential sums over primes”, Analytic and combinatorial number theory, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 296, MAIK Nauka/Interperiodica, Moscow, 2017, 220–242; Proc. Steklov Inst. Math., 296 (2017), 211–233
Citation in format AMSBIB
\Bibitem{RakRah17}
\by Z.~Kh.~Rakhmonov, F.~Z.~Rahmonov
\paper Short cubic exponential sums over primes
\inbook Analytic and combinatorial number theory
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 296
\pages 220--242
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3774}
\crossref{https://doi.org/10.1134/S0371968517010174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3640785}
\elib{https://elibrary.ru/item.asp?id=28905733}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 296
\pages 211--233
\crossref{https://doi.org/10.1134/S0081543817010175}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400278600017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017964735}
Linking options:
  • https://www.mathnet.ru/eng/tm3774
  • https://doi.org/10.1134/S0371968517010174
  • https://www.mathnet.ru/eng/tm/v296/p220
  • This publication is cited in the following 3 articles:
    1. Z. Kh. Rakhmonov, I. Allakov, B. Kh. Abraev, “Obobschenie ternarnoi problemy Goldbakha s pochti ravnymi slagaemymi”, Chebyshevskii sb., 24:4 (2023), 264–298  mathnet  crossref
    2. Z. Kh. Rakhmonov, “Otsenka korotkikh trigonometricheskikh summ s prostymi chislami v dlinnykh dugakh”, Chebyshevskii sb., 22:4 (2021), 200–224  mathnet  crossref
    3. Z. Kh. Rakhmonov, F. Z. Rakhmonov, “Trigonometricheskie summy s funktsiei Mebiusa”, Chebyshevskii sb., 20:4 (2019), 281–305  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :52
    References:61
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025