Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 295, Pages 218–228
DOI: https://doi.org/10.1134/S0371968516040130
(Mi tm3762)
 

This article is cited in 18 scientific papers (total in 18 papers)

Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin–Voigt viscoelastic materials

A. S. Shamaev, V. V. Shumilova

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: The work is devoted to the analysis of the spectral properties of a boundary value problem describing one-dimensional vibrations along the axis $Ox_1$ of periodically alternating $M$ elastic and $M$ viscoelastic layers parallel to the plane $Ox_2x_3$. It is shown that the spectrum of the boundary value problem is the union of roots of $M$ equations. The asymptotic behavior of the spectrum of the problem as $M\to\infty$ is analyzed; in particular, it is proved that not all sequences of eigenvalues of the original (prelimit) problem converge to eigenvalues of the corresponding homogenized (limit) problem.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: June 22, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 295, Pages 202–212
DOI: https://doi.org/10.1134/S0081543816080137
Bibliographic databases:
Document Type: Article
UDC: 517.958+517.984
Language: Russian
Citation: A. S. Shamaev, V. V. Shumilova, “Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin–Voigt viscoelastic materials”, Modern problems of mechanics, Collected papers, Trudy Mat. Inst. Steklova, 295, MAIK Nauka/Interperiodica, Moscow, 2016, 218–228; Proc. Steklov Inst. Math., 295 (2016), 202–212
Citation in format AMSBIB
\Bibitem{ShaShu16}
\by A.~S.~Shamaev, V.~V.~Shumilova
\paper Asymptotic behavior of the spectrum of one-dimensional vibrations in a~layered medium consisting of elastic and Kelvin--Voigt viscoelastic materials
\inbook Modern problems of mechanics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 295
\pages 218--228
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3762}
\crossref{https://doi.org/10.1134/S0371968516040130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628523}
\elib{https://elibrary.ru/item.asp?id=27643613}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 295
\pages 202--212
\crossref{https://doi.org/10.1134/S0081543816080137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000395572400013}
\elib{https://elibrary.ru/item.asp?id=27155746}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010711822}
Linking options:
  • https://www.mathnet.ru/eng/tm3762
  • https://doi.org/10.1134/S0371968516040130
  • https://www.mathnet.ru/eng/tm/v295/p218
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :42
    References:43
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024