Abstract:
The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class, we construct a trajectory whose projection on the space of slow variables crosses a small neighborhood of a strong resonance. We also estimate the speed of this crossing.
Citation:
M. N. Davletshin, D. V. Treschev, “Arnold diffusion in a neighborhood of strong resonances”, Modern problems of mechanics, Collected papers, Trudy Mat. Inst. Steklova, 295, MAIK Nauka/Interperiodica, Moscow, 2016, 72–106; Proc. Steklov Inst. Math., 295 (2016), 63–94
\Bibitem{DavTre16}
\by M.~N.~Davletshin, D.~V.~Treschev
\paper Arnold diffusion in a~neighborhood of strong resonances
\inbook Modern problems of mechanics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 295
\pages 72--106
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3752}
\crossref{https://doi.org/10.1134/S0371968516040051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628515}
\elib{https://elibrary.ru/item.asp?id=27643603}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 295
\pages 63--94
\crossref{https://doi.org/10.1134/S0081543816080058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000395572400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010754941}
Linking options:
https://www.mathnet.ru/eng/tm3752
https://doi.org/10.1134/S0371968516040051
https://www.mathnet.ru/eng/tm/v295/p72
This publication is cited in the following 3 articles:
A. Delshams, A. Granados, R. G. Schaefer, “Arnold diffusion for an a priori unstable Hamiltonian system with 3 + 1/2 degrees of freedom”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:6 (2024)
Valery Kozlov, “On the diffusion mechanism in Hamiltonian systems”, Funct. Anal. Appl., 58:4 (2024), 362–370
A. Delshams, R. G. Schaefer, “Arnold diffusion for a complete family of perturbations with two independent harmonics”, Discrete Contin. Dyn. Syst., 38:12 (2018), 6047–6072