Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 295, Pages 321–351
DOI: https://doi.org/10.1134/S037196851604018X
(Mi tm3750)
 

This article is cited in 16 scientific papers (total in 16 papers)

Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid

E. V. Vetchaninab, A. A. Kilinb

a Kalashnikov Izhevsk State Technical University, ul. Studencheskaya 7, Izhevsk, 426069 Russia
b Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
References:
Abstract: We consider the controlled motion in an ideal incompressible fluid of a rigid body with moving internal masses and an internal rotor in the presence of circulation of the fluid velocity around the body. The controllability of motion (according to the Rashevskii–Chow theorem) is proved for various combinations of control elements. In the case of zero circulation, we construct explicit controls (gaits) that ensure rotation and rectilinear (on average) motion. In the case of nonzero circulation, we examine the problem of stabilizing the body (compensating the drift) at the end point of the trajectory. We show that the drift can be compensated for if the body is inside a circular domain whose size is defined by the geometry of the body and the value of circulation.
Funding agency Grant number
Russian Science Foundation 14-19-01303
15-12-20035
The work of E.V. Vetchanin (Sections 2, 4 and Conclusions) is supported by the Russian Science Foundation under grant 14-19-01303 and performed at the Kalashnikov Izhevsk State Technical University. The work of A.A. Kilin (Sections 1 and 3) is supported by the Russian Science Foundation under grant 15-12-20035 and performed at the Udmurt State University.
Received: June 14, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 295, Pages 302–332
DOI: https://doi.org/10.1134/S0081543816080186
Bibliographic databases:
Document Type: Article
UDC: 532.3
Language: Russian
Citation: E. V. Vetchanin, A. A. Kilin, “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Modern problems of mechanics, Collected papers, Trudy Mat. Inst. Steklova, 295, MAIK Nauka/Interperiodica, Moscow, 2016, 321–351; Proc. Steklov Inst. Math., 295 (2016), 302–332
Citation in format AMSBIB
\Bibitem{VetKil16}
\by E.~V.~Vetchanin, A.~A.~Kilin
\paper Controlled motion of a~rigid body with internal mechanisms in an ideal incompressible fluid
\inbook Modern problems of mechanics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 295
\pages 321--351
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3750}
\crossref{https://doi.org/10.1134/S037196851604018X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628528}
\elib{https://elibrary.ru/item.asp?id=27643618}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 295
\pages 302--332
\crossref{https://doi.org/10.1134/S0081543816080186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000395572400018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010858466}
Linking options:
  • https://www.mathnet.ru/eng/tm3750
  • https://doi.org/10.1134/S037196851604018X
  • https://www.mathnet.ru/eng/tm/v295/p321
  • This publication is cited in the following 16 articles:
    1. Alexander A. Kilin, Anna M. Gavrilova, Elizaveta M. Artemova, “Dynamics of an Elliptic Foil with an Attached Vortex in an Ideal Fluid: The Integrable Case”, Regul. Chaot. Dyn., 2024  crossref
    2. Karavaev Yu.L., Klekovkin V A., Mamaev I.S., Tenenev V.A., Vetchanin E.V., “A Simple Physical Model For Control of An Propellerless Aquatic Robot”, J. Mech. Robot., 14:1 (2022), 011007  crossref  mathscinet  isi  scopus
    3. E. M. Artemova, E. V. Vetchanin, “Control of the motion of a circular cylinder in an ideal fluid using a source”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 604–617  mathnet  crossref
    4. Anton V. Klekovkin, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, Valentin A. Tenenev, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    5. E. V. Vetchanin, “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Rus. J. Nonlin. Dyn., 15:1 (2019), 41–57  mathnet  crossref  elib
    6. Valeriy Nikolsky, Ivan Kuzyayev, Oleksandr Alieksandrov, Viktor Ved, Andrii Pugach, Vadim Yaris, Serhiy Ptitsyn, Valerii Lopatin, “Analytical and experimental studies into the processes of hydrodynamics and heat exchange in the channels of disk pulse devices”, EEJET, 4:8 (100) (2019), 15  crossref
    7. Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502  mathnet  crossref  mathscinet
    8. A. A. Kilin, A. I. Klenov, V. A. Tenenev, “Upravlenie dvizheniem tela s pomoschyu vnutrennikh mass v vyazkoi zhidkosti”, Kompyuternye issledovaniya i modelirovanie, 10:4 (2018), 445–460  mathnet  crossref
    9. Alexey V. Borisov, Ivan S. Mamaev, Evgeny V. Vetchanin, “Self-propulsion of a Smooth Body in a Viscous Fluid Under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7-8 (2018), 850–874  mathnet  crossref
    10. Ivan S. Mamaev, Evgeny V. Vetchanin, “The Self-propulsion of a Foil with a Sharp Edge in a Viscous Fluid Under the Action of a Periodically Oscillating Rotor”, Regul. Chaotic Dyn., 23:7-8 (2018), 875–886  mathnet  crossref  mathscinet
    11. I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Nelin. Dinam., 14:4 (2018), 473–494  mathnet  crossref  elib
    12. E. V. Vetchanin, I. S. Mamaev, “Optimal control of the motion of a helical body in a liquid using rotors”, Russ. J. Math. Phys., 24:3 (2017), 399–411  crossref  mathscinet  zmath  isi  scopus
    13. Evgeny V. Vetchanin, Alexander A. Kilin, Ivan S. Mamaev, “Control of the Motion of a Helical Body in a Fluid Using Rotors”, Regul. Chaotic Dyn., 21:7-8 (2016), 874–884  mathnet  crossref
    14. E. V. Vetchanin, A. A. Kilin, “Upravlenie dvizheniem neuravnoveshennogo tyazhelogo ellipsoida v zhidkosti s pomoschyu rotorov”, Nelineinaya dinam., 12:4 (2016), 663–674  mathnet  crossref  mathscinet  elib
    15. Yu. L. Karavaev, A. A. Kilin, A. V. Klekovkin, “Experimental investigations of the controlled motion of a screwless underwater robot”, Regul. Chaotic Dyn., 21:7-8 (2016), 918–926  mathnet  crossref  mathscinet  zmath  isi  scopus
    16. A. I. Klenov, A. A. Kilin, “Influence of vortex structures on the controlled motion of an above-water screwless robot”, Regul. Chaotic Dyn., 21:7-8 (2016), 927–938  mathnet  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:400
    Full-text PDF :93
    References:56
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025