Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 294, Pages 268–292
DOI: https://doi.org/10.1134/S0371968516030171
(Mi tm3726)
 

This article is cited in 11 scientific papers (total in 11 papers)

The Hess–Appelrot system and its nonholonomic analogs

I. A. Bizyaev, A. V. Borisov, I. S. Mamaev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: This paper is concerned with the nonholonomic Suslov problem and its generalization proposed by Chaplygin. The issue of the existence of an invariant measure with singular density (having singularities at some points of the phase space) is discussed.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: April 25, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 294, Pages 252–275
DOI: https://doi.org/10.1134/S0081543816060171
Bibliographic databases:
Document Type: Article
UDC: 517.925+531.381
Language: Russian
Citation: I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Hess–Appelrot system and its nonholonomic analogs”, Modern problems of mathematics, mechanics, and mathematical physics. II, Collected papers, Trudy Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 268–292; Proc. Steklov Inst. Math., 294 (2016), 252–275
Citation in format AMSBIB
\Bibitem{BizBorMam16}
\by I.~A.~Bizyaev, A.~V.~Borisov, I.~S.~Mamaev
\paper The Hess--Appelrot system and its nonholonomic analogs
\inbook Modern problems of mathematics, mechanics, and mathematical physics.~II
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 294
\pages 268--292
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3726}
\crossref{https://doi.org/10.1134/S0371968516030171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628506}
\elib{https://elibrary.ru/item.asp?id=26601064}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 294
\pages 252--275
\crossref{https://doi.org/10.1134/S0081543816060171}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386554900017}
\elib{https://elibrary.ru/item.asp?id=27581499}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992061322}
Linking options:
  • https://www.mathnet.ru/eng/tm3726
  • https://doi.org/10.1134/S0371968516030171
  • https://www.mathnet.ru/eng/tm/v294/p268
  • This publication is cited in the following 11 articles:
    1. A. A. Kosov, “On Analogues of the Hess Case for a Gyrostat under the Action of the Moment of Gyroscopic and Circular Forces”, Mech. Solids, 57:8 (2022), 1848  crossref
    2. A. A. Kosov, E. I. Semenov, “O tochnykh resheniyakh uravnenii vraschatelnogo dvizheniya tverdogo tela pri deistvii momenta tsirkulyarno-giroskopicheskikh sil”, Zhurnal SVMO, 23:2 (2021), 159–170  mathnet  crossref
    3. Alexander A. Burov, Anna D. Guerman, Vasily I. Nikonov, “Asymptotic Invariant Surfaces for Non-Autonomous Pendulum-Type Systems”, Regul. Chaotic Dyn., 25:1 (2020), 121–130  mathnet  crossref
    4. O. V. Kholostova, “On the Dynamics of a Rigid Body in the Hess Case at High-Frequency Vibrations of a Suspension Point”, Rus. J. Nonlin. Dyn., 16:1 (2020), 59–84  mathnet  crossref  elib
    5. A. A. Burov, “Linear invariant relations in the problem of the motion of a bundle of two bodies”, Dokl. Phys., 65:4 (2020), 147–148  crossref  isi  scopus
    6. A. Borisov, A. Kilin, I. Mamaev, “Invariant submanifolds of genus 5 and a cantor staircase in the nonholonomic model of a snakeboard”, Int. J. Bifurcation Chaos, 29:3 (2019), 1930008  crossref  mathscinet  zmath  isi  scopus
    7. A. Borisov, I. Mamaev, “Rigid body dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    8. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975  mathnet  crossref
    10. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Sluchai Gessa–Appelrota i kvantovanie chisla vrascheniya”, Nelineinaya dinam., 13:3 (2017), 433–452  mathnet  crossref  mathscinet  elib
    11. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Hess–Appelrot case and quantization of the rotation number”, Regul. Chaot. Dyn., 22:2 (2017), 180  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :125
    References:89
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025