Abstract:
We characterize weighted inequalities corresponding to the embedding of a class of absolutely continuous functions into a fractional-order Sobolev space. As auxiliary results of the paper, which are also of independent interest, we obtain several new types of necessary and sufficient conditions for the boundedness of the Hardy–Steklov operator (integral operator with two variable limits) in weighted Lebesgue spaces.
The work of E. P. Ushakova (Sections 1 and 2) is supported by the Russian Science Foundation under grant 14-11-00443 and performed in Steklov Mathematical Institute of Russian Academy of Sciences. Section 3 is written by M. G. Nasyrova.
Citation:
M. G. Nasyrova, E. P. Ushakova, “Hardy–Steklov operators and Sobolev-type embedding inequalities”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 236–262; Proc. Steklov Inst. Math., 293 (2016), 228–254
\Bibitem{NasUsh16}
\by M.~G.~Nasyrova, E.~P.~Ushakova
\paper Hardy--Steklov operators and Sobolev-type embedding inequalities
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 236--262
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3717}
\crossref{https://doi.org/10.1134/S0371968516020175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628483}
\elib{https://elibrary.ru/item.asp?id=26344482}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 228--254
\crossref{https://doi.org/10.1134/S0081543816040179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200017}
\elib{https://elibrary.ru/item.asp?id=27120313}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980012051}
Linking options:
https://www.mathnet.ru/eng/tm3717
https://doi.org/10.1134/S0371968516020175
https://www.mathnet.ru/eng/tm/v293/p236
This publication is cited in the following 12 articles:
W. Albalawi, Z. A. Khan, “Synchronization analysis of multiple integral inequalities driven by Steklov operator”, Fractal Fract., 5:3 (2021), 97
V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis”, Math. Notes, 105:1 (2019), 91–103
D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line”, Russian Math. Surveys, 74:6 (2019), 1075–1115
V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov operators and duality principle in weighted Sobolev spaces of the first order”, Dokl. Math., 97:3 (2018), 232–235
D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Spaces associated with weighted Sobolev spaces on the real line”, Dokl. Math., 98:1 (2018), 373–376
P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “On bilinear Hardy–Steklov operators”, Dokl. Math., 98:3 (2018), 634–637
P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “Bilinear Hardy–Steklov Operators”, Math. Notes, 104:6 (2018), 823–832
D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5-6 (2017), 890–912
E. P. Ushakova, “Alternative boundedness characteristics for the Hardy–Steklov operator”, Eurasian Math. J., 8:2 (2017), 74–96
D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov Integral Operators. Part I”, Proc. Steklov Inst. Math., 300, suppl. 2 (2018), 1–112
D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On weighted Sobolev spaces on the real line”, Dokl. Math., 93:1 (2016), 78–81
D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov Integral Operators. Part II”, Proc. Steklov Inst. Math., 302, suppl. 1 (2018), 1–61