Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 236–262
DOI: https://doi.org/10.1134/S0371968516020175
(Mi tm3717)
 

This article is cited in 12 scientific papers (total in 12 papers)

Hardy–Steklov operators and Sobolev-type embedding inequalities

M. G. Nasyrovaa, E. P. Ushakovab

a Computing Center, Far Eastern Branch of the Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk, 680000 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: We characterize weighted inequalities corresponding to the embedding of a class of absolutely continuous functions into a fractional-order Sobolev space. As auxiliary results of the paper, which are also of independent interest, we obtain several new types of necessary and sufficient conditions for the boundedness of the Hardy–Steklov operator (integral operator with two variable limits) in weighted Lebesgue spaces.
Funding agency Grant number
Russian Science Foundation 14-11-00443
The work of E. P. Ushakova (Sections 1 and 2) is supported by the Russian Science Foundation under grant 14-11-00443 and performed in Steklov Mathematical Institute of Russian Academy of Sciences. Section 3 is written by M. G. Nasyrova.
Received: November 10, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 228–254
DOI: https://doi.org/10.1134/S0081543816040179
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: M. G. Nasyrova, E. P. Ushakova, “Hardy–Steklov operators and Sobolev-type embedding inequalities”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 236–262; Proc. Steklov Inst. Math., 293 (2016), 228–254
Citation in format AMSBIB
\Bibitem{NasUsh16}
\by M.~G.~Nasyrova, E.~P.~Ushakova
\paper Hardy--Steklov operators and Sobolev-type embedding inequalities
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 236--262
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3717}
\crossref{https://doi.org/10.1134/S0371968516020175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628483}
\elib{https://elibrary.ru/item.asp?id=26344482}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 228--254
\crossref{https://doi.org/10.1134/S0081543816040179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200017}
\elib{https://elibrary.ru/item.asp?id=27120313}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980012051}
Linking options:
  • https://www.mathnet.ru/eng/tm3717
  • https://doi.org/10.1134/S0371968516020175
  • https://www.mathnet.ru/eng/tm/v293/p236
  • This publication is cited in the following 12 articles:
    1. W. Albalawi, Z. A. Khan, “Synchronization analysis of multiple integral inequalities driven by Steklov operator”, Fractal Fract., 5:3 (2021), 97  crossref  isi
    2. V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis”, Math. Notes, 105:1 (2019), 91–103  mathnet  crossref  crossref  mathscinet  isi  elib
    3. D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line”, Russian Math. Surveys, 74:6 (2019), 1075–1115  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov operators and duality principle in weighted Sobolev spaces of the first order”, Dokl. Math., 97:3 (2018), 232–235  mathnet  mathnet  crossref  crossref  mathscinet  mathscinet  zmath  isi  elib  elib  scopus
    5. D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Spaces associated with weighted Sobolev spaces on the real line”, Dokl. Math., 98:1 (2018), 373–376  mathnet  crossref  crossref  zmath  isi  elib  elib  scopus
    6. P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “On bilinear Hardy–Steklov operators”, Dokl. Math., 98:3 (2018), 634–637  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    7. P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “Bilinear Hardy–Steklov Operators”, Math. Notes, 104:6 (2018), 823–832  mathnet  mathnet  crossref  isi  scopus
    8. D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5-6 (2017), 890–912  crossref  zmath  isi  scopus
    9. E. P. Ushakova, “Alternative boundedness characteristics for the Hardy–Steklov operator”, Eurasian Math. J., 8:2 (2017), 74–96  mathnet  mathscinet
    10. D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov Integral Operators. Part I”, Proc. Steklov Inst. Math., 300, suppl. 2 (2018), 1–112  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    11. D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On weighted Sobolev spaces on the real line”, Dokl. Math., 93:1 (2016), 78–81  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    12. D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov Integral Operators. Part II”, Proc. Steklov Inst. Math., 302, suppl. 1 (2018), 1–61  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:385
    Full-text PDF :71
    References:64
    First page:7
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025