Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 236–262
DOI: https://doi.org/10.1134/S0371968516020175
(Mi tm3717)
 

This article is cited in 12 scientific papers (total in 12 papers)

Hardy–Steklov operators and Sobolev-type embedding inequalities

M. G. Nasyrovaa, E. P. Ushakovab

a Computing Center, Far Eastern Branch of the Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk, 680000 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: We characterize weighted inequalities corresponding to the embedding of a class of absolutely continuous functions into a fractional-order Sobolev space. As auxiliary results of the paper, which are also of independent interest, we obtain several new types of necessary and sufficient conditions for the boundedness of the Hardy–Steklov operator (integral operator with two variable limits) in weighted Lebesgue spaces.
Funding agency Grant number
Russian Science Foundation 14-11-00443
The work of E. P. Ushakova (Sections 1 and 2) is supported by the Russian Science Foundation under grant 14-11-00443 and performed in Steklov Mathematical Institute of Russian Academy of Sciences. Section 3 is written by M. G. Nasyrova.
Received: November 10, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 228–254
DOI: https://doi.org/10.1134/S0081543816040179
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: M. G. Nasyrova, E. P. Ushakova, “Hardy–Steklov operators and Sobolev-type embedding inequalities”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 236–262; Proc. Steklov Inst. Math., 293 (2016), 228–254
Citation in format AMSBIB
\Bibitem{NasUsh16}
\by M.~G.~Nasyrova, E.~P.~Ushakova
\paper Hardy--Steklov operators and Sobolev-type embedding inequalities
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 236--262
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3717}
\crossref{https://doi.org/10.1134/S0371968516020175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628483}
\elib{https://elibrary.ru/item.asp?id=26344482}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 228--254
\crossref{https://doi.org/10.1134/S0081543816040179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200017}
\elib{https://elibrary.ru/item.asp?id=27120313}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980012051}
Linking options:
  • https://www.mathnet.ru/eng/tm3717
  • https://doi.org/10.1134/S0371968516020175
  • https://www.mathnet.ru/eng/tm/v293/p236
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:342
    Full-text PDF :61
    References:54
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024