Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 293, Pages 217–223
DOI: https://doi.org/10.1134/S0371968516020151
(Mi tm3715)
 

This article is cited in 4 scientific papers (total in 4 papers)

Relative widths of Sobolev classes in the uniform and integral metrics

Yu. V. Malykhin

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (185 kB) Citations (4)
References:
Abstract: Let $W^r_p$ be the Sobolev class consisting of $2\pi$-periodic functions $f$ such that $\|f^{(r)}\|_p\le1$. We consider the relative widths $d_n(W^r_p,MW^r_p,L_p)$, which characterize the best approximation of the class $W^r_p$ in the space $L_p$ by linear subspaces for which (in contrast to Kolmogorov widths) it is additionally required that the approximating functions $g$ should lie in $MW^r_p$, i.e., $\|g^{(r)}\|_p\le M$. We establish estimates for the relative widths in the cases of $p=1$ and $p=\infty$; it follows from these estimates that for almost optimal (with error at most $Cn^{-r}$, where $C$ is an absolute constant) approximations of the class $W^r_p$ by linear $2n$-dimensional spaces, the norms of the $r$th derivatives of some approximating functions are not less than $c\ln\min(n,r)$ for large $n$ and $r$.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: October 7, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 293, Pages 209–215
DOI: https://doi.org/10.1134/S0081543816040155
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: Yu. V. Malykhin, “Relative widths of Sobolev classes in the uniform and integral metrics”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 217–223; Proc. Steklov Inst. Math., 293 (2016), 209–215
Citation in format AMSBIB
\Bibitem{Mal16}
\by Yu.~V.~Malykhin
\paper Relative widths of Sobolev classes in the uniform and integral metrics
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 217--223
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3715}
\crossref{https://doi.org/10.1134/S0371968516020151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628481}
\elib{https://elibrary.ru/item.asp?id=26344480}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 209--215
\crossref{https://doi.org/10.1134/S0081543816040155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200015}
\elib{https://elibrary.ru/item.asp?id=27120103}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980002417}
Linking options:
  • https://www.mathnet.ru/eng/tm3715
  • https://doi.org/10.1134/S0371968516020151
  • https://www.mathnet.ru/eng/tm/v293/p217
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:301
    Full-text PDF :43
    References:43
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024