Abstract:
Let Wrp be the Sobolev class consisting of 2π-periodic functions f such that ‖f(r)‖p⩽1. We consider the relative widths dn(Wrp,MWrp,Lp), which characterize the best approximation of the class Wrp in the space Lp by linear subspaces for which (in contrast to Kolmogorov widths) it is additionally required that the approximating functions g should lie in MWrp, i.e., ‖g(r)‖p⩽M. We establish estimates for the relative widths in the cases of p=1 and p=∞; it follows from these estimates that for almost optimal (with error at most Cn−r, where C is an absolute constant) approximations of the class Wrp by linear 2n-dimensional spaces, the norms of the rth derivatives of some approximating functions are not less than clnmin for large n and r.
Citation:
Yu. V. Malykhin, “Relative widths of Sobolev classes in the uniform and integral metrics”, Function spaces, approximation theory, and related problems of mathematical analysis, Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 293, MAIK Nauka/Interperiodica, Moscow, 2016, 217–223; Proc. Steklov Inst. Math., 293 (2016), 209–215
\Bibitem{Mal16}
\by Yu.~V.~Malykhin
\paper Relative widths of Sobolev classes in the uniform and integral metrics
\inbook Function spaces, approximation theory, and related problems of mathematical analysis
\bookinfo Collected papers. In commemoration of the 110th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 293
\pages 217--223
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3715}
\crossref{https://doi.org/10.1134/S0371968516020151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628481}
\elib{https://elibrary.ru/item.asp?id=26344480}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 293
\pages 209--215
\crossref{https://doi.org/10.1134/S0081543816040155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380722200015}
\elib{https://elibrary.ru/item.asp?id=27120103}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980002417}
Linking options:
https://www.mathnet.ru/eng/tm3715
https://doi.org/10.1134/S0371968516020151
https://www.mathnet.ru/eng/tm/v293/p217
This publication is cited in the following 4 articles:
Yu. V. Malykhin, “A Complete Description of the Relative Widths of Sobolev Classes in the Uniform Metric”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S188–S192
A. R. Alimov, “Continuity of the metric projection and local solar properties of sets: continuity of the metric projection and solar properties”, Set-Valued Var. Anal., 27:1 (2019), 213–222
A. R. Alimov, “Selections of the metric projection operator and strict solarity of sets with continuous metric projection”, Sb. Math., 208:7 (2017), 915–928
A. A. Vasil'eva, “Widths of weighted {S}obolev classes with constraints $f(a)=\cdots= f^{(k-1)}(a)=f^{(k)}(b)=\cdots=f^{(r-1)}(b)=0$ and the spectra of nonlinear differential equations”, Russ. J. Math. Phys., 24:3 (2017), 376–398