Abstract:
The paper is devoted to problems at the intersection of formal group theory, the theory of Hirzebruch genera, and the theory of elliptic functions. In the focus of our interest are Tate formal groups corresponding to the general five-parametric model of the elliptic curve as well as formal groups corresponding to the general four-parametric Krichever genus. We describe coefficient rings of formal groups whose exponentials are determined by elliptic functions of levels $2$ and $3$.
E.Yu. Bunkova's research was supported by the Russian Foundation for Basic Research (project no. 14-01-00012-a) and by the program “Fundamental Problems of Nonlinear Dynamics” of the Presidium of the Russian Academy of Sciences. A.V. Ustinov's research (Sections 8, 12, 14, and 15) was supported by the Russian Science Foundation under grant 14-11-00335.
Citation:
E. Yu. Bunkova, V. M. Buchstaber, A. V. Ustinov, “Coefficient rings of Tate formal groups determining Krichever genera”, Algebra, geometry, and number theory, Collected papers. Dedicated to Academician Vladimir Petrovich Platonov on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 292, MAIK Nauka/Interperiodica, Moscow, 2016, 43–68; Proc. Steklov Inst. Math., 292 (2016), 37–62
\Bibitem{BunBucUst16}
\by E.~Yu.~Bunkova, V.~M.~Buchstaber, A.~V.~Ustinov
\paper Coefficient rings of Tate formal groups determining Krichever genera
\inbook Algebra, geometry, and number theory
\bookinfo Collected papers. Dedicated to Academician Vladimir Petrovich Platonov on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 292
\pages 43--68
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3694}
\crossref{https://doi.org/10.1134/S0371968516010040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628453}
\zmath{https://zbmath.org/?q=an:1348.14111}
\elib{https://elibrary.ru/item.asp?id=25772712}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 292
\pages 37--62
\crossref{https://doi.org/10.1134/S0081543816010041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376271200004}
\elib{https://elibrary.ru/item.asp?id=27049251}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971310826}
Linking options:
https://www.mathnet.ru/eng/tm3694
https://doi.org/10.1134/S0371968516010040
https://www.mathnet.ru/eng/tm/v292/p43
This publication is cited in the following 6 articles:
Malkhaz Bakuradze, Alexander Gamkrelidze, “On classifying map of the integral Krichever–Hoehn formal group law”, Georgian Mathematical Journal, 30:1 (2023), 47
A. V. Ustinov, “On Formal Buchstaber Groups of Special Form”, Math. Notes, 105:6 (2019), 894–904
E. Yu. Bunkova, “Universal Formal Group for Elliptic Genus of Level $N$”, Proc. Steklov Inst. Math., 305 (2019), 33–52
Elena Yu. Bunkova, “Hirzebruch functional equation: classification of solutions”, Proc. Steklov Inst. Math., 302 (2018), 33–47
A. V. Ustinov, “Buchstaber Formal Group and Elliptic Functions of Small Levels”, Math. Notes, 102:1 (2017), 81–91
E. Yu. Bunkova, “Elliptic function of level $4$”, Proc. Steklov Inst. Math., 294 (2016), 201–214