Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 292, Pages 7–15
DOI: https://doi.org/10.1134/S0371968516010015
(Mi tm3693)
 

This article is cited in 4 scientific papers (total in 4 papers)

Local nilpotency of the McCrimmon radical of a Jordan system

José A. Anquelaa, Teresa Cortésa, Efim Zelmanovb

a Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo s/n, 33007 Oviedo, Spain
b Department of Mathematics, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0112, USA
Full-text PDF (201 kB) Citations (4)
References:
Abstract: Using the fact that absolute zero divisors in Jordan pairs become Lie sandwiches of the corresponding Tits–Kantor–Koecher Lie algebras, we prove local nilpotency of the McCrimmon radical of a Jordan system (algebra, triple system, or pair) over an arbitrary ring of scalars. As an application, we show that simple Jordan systems are always nondegenerate.
Funding agency Grant number
Ministerio de Economía y Competitividad
Federación Española de Enfermedades Raras MTM2014-52470-P
National Science Foundation
The first two authors were partially supported by the Spanish Ministerio de Economía y Competitividad and Fondos FEDER, MTM2014-52470-P. The third author was partially supported by the National Science Foundation of the USA.
Received: November 24, 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 292, Pages 1–9
DOI: https://doi.org/10.1134/S0081543816010016
Bibliographic databases:
Document Type: Article
UDC: 512.554
Language: English
Citation: José A. Anquela, Teresa Cortés, Efim Zelmanov, “Local nilpotency of the McCrimmon radical of a Jordan system”, Algebra, geometry, and number theory, Collected papers. Dedicated to Academician Vladimir Petrovich Platonov on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 292, MAIK Nauka/Interperiodica, Moscow, 2016, 7–15; Proc. Steklov Inst. Math., 292 (2016), 1–9
Citation in format AMSBIB
\Bibitem{AnqCorZel16}
\by Jos\'e~A.~Anquela, Teresa~Cort\'es, Efim~Zelmanov
\paper Local nilpotency of the McCrimmon radical of a Jordan system
\inbook Algebra, geometry, and number theory
\bookinfo Collected papers. Dedicated to Academician Vladimir Petrovich Platonov on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 292
\pages 7--15
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3693}
\crossref{https://doi.org/10.1134/S0371968516010015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628450}
\elib{https://elibrary.ru/item.asp?id=25772709}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 292
\pages 1--9
\crossref{https://doi.org/10.1134/S0081543816010016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376271200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971320541}
Linking options:
  • https://www.mathnet.ru/eng/tm3693
  • https://doi.org/10.1134/S0371968516010015
  • https://www.mathnet.ru/eng/tm/v292/p7
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025