Abstract:
Let G be a real algebraic group, H≤G an algebraic subgroup containing a maximal reductive subgroup of G, and Γ a subgroup of G acting on G/H by left translations. We conjecture that Γ is virtually solvable provided its action on G/H is properly discontinuous and Γ∖G/H is compact, and we confirm this conjecture when G does not contain simple algebraic subgroups of rank ≥2. If the action of Γ on G/H (which is isomorphic to an affine linear space An) is linear, our conjecture coincides with the Auslander conjecture. We prove the Auslander conjecture for n≤5.
Citation:
George Tomanov, “Properly discontinuous group actions on affine homogeneous spaces”, Algebra, geometry, and number theory, Collected papers. Dedicated to Academician Vladimir Petrovich Platonov on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 292, MAIK Nauka/Interperiodica, Moscow, 2016, 268–279; Proc. Steklov Inst. Math., 292 (2016), 260–271