Abstract:
For a conflict-controlled dynamical system whose motion is described by neutral-type functional differential equations in Hale's form and for a quality index that evaluates the motion history realized up to the terminal instant of time, we consider a differential game in the class of control-with-guide strategies. We construct an approximating differential game in the class of pure positional strategies in which the motion of a conflict-controlled system is described by ordinary differential equations and the quality index is terminal. We show that the value of the approximating game gives the value of the original game in the limit, and that the optimal strategies in the original game can be constructed by using the optimal motions of the approximating game as guides.
Citation:
N. Yu. Lukoyanov, A. R. Plaksin, “Differential games for neutral-type systems: An approximation model”, Optimal control, Collected papers. In commemoration of the 105th anniversary of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 291, MAIK Nauka/Interperiodica, Moscow, 2015, 202–214; Proc. Steklov Inst. Math., 291 (2015), 190–202
\Bibitem{LukPla15}
\by N.~Yu.~Lukoyanov, A.~R.~Plaksin
\paper Differential games for neutral-type systems: An approximation model
\inbook Optimal control
\bookinfo Collected papers. In commemoration of the 105th anniversary of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 291
\pages 202--214
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3679}
\crossref{https://doi.org/10.1134/S0371968515040159}
\elib{https://elibrary.ru/item.asp?id=24776672}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 291
\pages 190--202
\crossref{https://doi.org/10.1134/S0081543815080155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369344400015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957560735}
Linking options:
https://www.mathnet.ru/eng/tm3679
https://doi.org/10.1134/S0371968515040159
https://www.mathnet.ru/eng/tm/v291/p202
This publication is cited in the following 8 articles:
M. I. Gomoyunov, N. Yu. Lukoyanov, “Tsena i optimalnye strategii v pozitsionnoi differentsialnoi igre dlya sistemy neitralnogo tipa”, Tr. IMM UrO RAN, 30, no. 3, 2024, 86–98
M. I. Gomoyunov, N. Yu. Lukoyanov, “The Value and Optimal Strategies in a Positional Differential Game for a Neutral-Type System”, Proc. Steklov Inst. Math., 327:S1 (2024), S112
M. Gomoyunov, “Solution to a zero-sum differential game with fractional dynamics via approximations”, Dyn. Games Appl., 10:2 (2020), 417–443
A. A. Chikrii, A. G. Rutkas, L. A. Vlasenko, Lecture Notes in Control and Information Sciences - Proceedings, Stability, Control and Differential Games, 2020, 63
N. Yu. Lukoyanov, A. R. Plaksin, “On the Theory of Positional Differential Games for Neutral-Type Systems”, Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S83–S92
M. I. Gomoyunov, A. R. Plaksin, “On basic equation of differential games for neutral-type systems”, Mech. Sol., 54:2 (2019), 131–143
M. I. Gomoyunov, “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Fract. Calc. Appl. Anal., 21:5 (2018), 1238–1261
Mikhail Gomoyunov, Anton Plaksin, “On a Problem of Guarantee Optimization in Time-Delay Systems**This work is supported by the Russian Science Foundation (project no. 15{11{10018).”, IFAC-PapersOnLine, 48:25 (2015), 172