Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 290, Pages 136–148
DOI: https://doi.org/10.1134/S0371968515030115
(Mi tm3656)
 

This article is cited in 7 scientific papers (total in 7 papers)

Manifolds of solutions for Hirzebruch functional equations

V. M. Buchstaber, E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (227 kB) Citations (7)
References:
Abstract: For the $n$th Hirzebruch equation we introduce the notion of universal manifold $\mathcal M_n$ of formal solutions. It is shown that the manifold $\mathcal M_n$, where $n>1$, is algebraic and its dimension is not greater than $n+1$. We give a family of polynomials generating the relation ideal in the polynomial ring on $\mathcal M_n$. In the case $n=2$ the generators of this ideal are described. As a corollary we obtain an effective description of the manifold $\mathcal M_2$ and therefore all series determining complex Hirzebruch genera that are fiberwise multiplicative on projectivizations of complex vector bundles. A family of analytic solutions of the second Hirzebruch equation is described in terms of Weierstrass elliptic functions and in terms of Baker–Akhiezer functions of elliptic curves. For this functions the curves differ, yet the series expansions in the vicinity of $0$ coincide.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: March 15, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 290, Issue 1, Pages 125–137
DOI: https://doi.org/10.1134/S0081543815060115
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. M. Buchstaber, E. Yu. Bunkova, “Manifolds of solutions for Hirzebruch functional equations”, Modern problems of mathematics, mechanics, and mathematical physics, Collected papers, Trudy Mat. Inst. Steklova, 290, MAIK Nauka/Interperiodica, Moscow, 2015, 136–148; Proc. Steklov Inst. Math., 290:1 (2015), 125–137
Citation in format AMSBIB
\Bibitem{BucBun15}
\by V.~M.~Buchstaber, E.~Yu.~Bunkova
\paper Manifolds of solutions for Hirzebruch functional equations
\inbook Modern problems of mathematics, mechanics, and mathematical physics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 290
\pages 136--148
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3656}
\crossref{https://doi.org/10.1134/S0371968515030115}
\elib{https://elibrary.ru/item.asp?id=24045398}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 290
\issue 1
\pages 125--137
\crossref{https://doi.org/10.1134/S0081543815060115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363268500011}
\elib{https://elibrary.ru/item.asp?id=24962325}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944679185}
Linking options:
  • https://www.mathnet.ru/eng/tm3656
  • https://doi.org/10.1134/S0371968515030115
  • https://www.mathnet.ru/eng/tm/v290/p136
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:417
    Full-text PDF :68
    References:59
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024