Abstract:
Quantum systems of particles obeying Bose statistics and moving in d-dimensional lattices are studied. The original Bose–Hubbard Hamiltonian is considered, together with model systems related to this Hamiltonian: the Bose–Hubbard model with exchange interaction of infinite radius and the Bose–Hubbard model with infinite interaction potential. Rigorous results concerning the proof of the existence of Bose condensation and a phase transition to the Mott insulator state in these systems are presented.
Citation:
D. P. Sankovich, “Rigorous results of phase transition theory in lattice boson models”, Modern problems of mathematics, mechanics, and mathematical physics, Collected papers, Trudy Mat. Inst. Steklova, 290, MAIK Nauka/Interperiodica, Moscow, 2015, 335–343; Proc. Steklov Inst. Math., 290:1 (2015), 318–325