Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 290, Pages 166–177
DOI: https://doi.org/10.1134/S0371968515030140
(Mi tm3646)
 

This article is cited in 3 scientific papers (total in 3 papers)

Transverse fundamental group and projected embeddings

S. A. Melikhov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (257 kB) Citations (3)
References:
Abstract: For a generic degree $d$ smooth map $f:N^n\to M^n$ we introduce its “transverse fundamental group” $\pi (f)$, which reduces to $\pi _1(M)$ in the case where $f$ is a covering, and in general admits a monodromy homomorphism $\pi (f)\to S_{|d|}$; nevertheless, we show that $\pi (f)$ can be nontrivial even for rather simple degree $1$ maps $S^n\to S^n$. We apply $\pi (f)$ to the problem of lifting $f$ to an embedding $N\hookrightarrow M\times \mathbb R^2$: for such a lift to exist, the monodromy $\pi (f)\to S_{|d|}$ must factor through the group of concordance classes of $|d|$-component string links. At least if $|d|<7$, this requires $\pi (f)$ to be torsion-free.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: March 15, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 290, Issue 1, Pages 155–165
DOI: https://doi.org/10.1134/S0081543815060140
Bibliographic databases:
Document Type: Article
UDC: 515.162.6+515.143.3
Language: Russian
Citation: S. A. Melikhov, “Transverse fundamental group and projected embeddings”, Modern problems of mathematics, mechanics, and mathematical physics, Collected papers, Trudy Mat. Inst. Steklova, 290, MAIK Nauka/Interperiodica, Moscow, 2015, 166–177; Proc. Steklov Inst. Math., 290:1 (2015), 155–165
Citation in format AMSBIB
\Bibitem{Mel15}
\by S.~A.~Melikhov
\paper Transverse fundamental group and projected embeddings
\inbook Modern problems of mathematics, mechanics, and mathematical physics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 290
\pages 166--177
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3646}
\crossref{https://doi.org/10.1134/S0371968515030140}
\elib{https://elibrary.ru/item.asp?id=24045401}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 290
\issue 1
\pages 155--165
\crossref{https://doi.org/10.1134/S0081543815060140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363268500014}
\elib{https://elibrary.ru/item.asp?id=24962791}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944711310}
Linking options:
  • https://www.mathnet.ru/eng/tm3646
  • https://doi.org/10.1134/S0371968515030140
  • https://www.mathnet.ru/eng/tm/v290/p166
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :61
    References:38
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024