Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 290, Pages 191–201
DOI: https://doi.org/10.1134/S0371968515030164
(Mi tm3642)
 

This article is cited in 7 scientific papers (total in 8 papers)

Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface

O. K. Sheinman

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (215 kB) Citations (8)
References:
Abstract: The Hamiltonian property and integrability of the Lax equations with spectral parameter on a Riemann surface are considered. The operators of Lax pairs are meromorphic functions of special form on a Riemann surface of arbitrary positive genus with values in an arbitrary semisimple Lie algebra. The study combines the theory of Lax equations with spectral parameter on a Riemann surface, as proposed by I.M. Krichever in 2001, with a “group-theoretic approach.”
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: March 15, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 290, Issue 1, Pages 178–188
DOI: https://doi.org/10.1134/S0081543815060164
Bibliographic databases:
Document Type: Article
UDC: 512.554.3+514.745.82
Language: Russian
Citation: O. K. Sheinman, “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface”, Modern problems of mathematics, mechanics, and mathematical physics, Collected papers, Trudy Mat. Inst. Steklova, 290, MAIK Nauka/Interperiodica, Moscow, 2015, 191–201; Proc. Steklov Inst. Math., 290:1 (2015), 178–188
Citation in format AMSBIB
\Bibitem{She15}
\by O.~K.~Sheinman
\paper Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface
\inbook Modern problems of mathematics, mechanics, and mathematical physics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 290
\pages 191--201
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3642}
\crossref{https://doi.org/10.1134/S0371968515030164}
\elib{https://elibrary.ru/item.asp?id=24045403}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 290
\issue 1
\pages 178--188
\crossref{https://doi.org/10.1134/S0081543815060164}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363268500016}
\elib{https://elibrary.ru/item.asp?id=24962764}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944710250}
Linking options:
  • https://www.mathnet.ru/eng/tm3642
  • https://doi.org/10.1134/S0371968515030164
  • https://www.mathnet.ru/eng/tm/v290/p191
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :44
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024