Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 290, Pages 226–238
DOI: https://doi.org/10.1134/S037196851503019X
(Mi tm3631)
 

This article is cited in 11 scientific papers (total in 11 papers)

Lévy Laplacians and instantons

B. O. Volkov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We describe dual and antidual solutions of the Yang–Mills equations by means of Lévy Laplacians. To this end, we introduce a class of Lévy Laplacians parameterized by the choice of a curve in the group $\mathrm {SO}(4)$. Two approaches are used to define such Laplacians: (i) the Lévy Laplacian can be defined as an integral functional defined by a curve in $\mathrm {SO}(4)$ and a special form of the second-order derivative, or (ii) the Lévy Laplacian can be defined as the Cesàro mean of second-order derivatives along vectors from the orthonormal basis constructed by such a curve. We prove that under some conditions imposed on the curve generating the Lévy Laplacian, a connection in the trivial vector bundle with base $\mathbb R^4$ is an instanton (or an anti-instanton) if and only if the parallel transport generated by the connection is harmonic for such a Lévy Laplacian.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: March 15, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 290, Issue 1, Pages 210–222
DOI: https://doi.org/10.1134/S008154381506019X
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: B. O. Volkov, “Lévy Laplacians and instantons”, Modern problems of mathematics, mechanics, and mathematical physics, Collected papers, Trudy Mat. Inst. Steklova, 290, MAIK Nauka/Interperiodica, Moscow, 2015, 226–238; Proc. Steklov Inst. Math., 290:1 (2015), 210–222
Citation in format AMSBIB
\Bibitem{Vol15}
\by B.~O.~Volkov
\paper L\'evy Laplacians and instantons
\inbook Modern problems of mathematics, mechanics, and mathematical physics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 290
\pages 226--238
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3631}
\crossref{https://doi.org/10.1134/S037196851503019X}
\elib{https://elibrary.ru/item.asp?id=24045407}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 290
\issue 1
\pages 210--222
\crossref{https://doi.org/10.1134/S008154381506019X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363268500019}
\elib{https://elibrary.ru/item.asp?id=24962692}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944706110}
Linking options:
  • https://www.mathnet.ru/eng/tm3631
  • https://doi.org/10.1134/S037196851503019X
  • https://www.mathnet.ru/eng/tm/v290/p226
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :64
    References:83
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024