Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 289, Pages 83–106
DOI: https://doi.org/10.1134/S0371968515020053
(Mi tm3628)
 

This article is cited in 4 scientific papers (total in 4 papers)

V.A. Steklov's problem of estimating the growth of orthogonal polynomials

A. I. Aptekareva, S. A. Denisovb, D. N. Tulyakova

a Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
b Department of Mathematics, University of Wisconsin–Madison, Madison, WI, USA
Full-text PDF (303 kB) Citations (4)
References:
Abstract: The well-known problem of V.A. Steklov is closely related to the following extremal problem. For a fixed $n\in \mathbb N$, find $M_{n,\delta }=\sup _{\sigma \in S_\delta } \mathopen \|\phi _n\|_{L^\infty (\mathbb T)}$, where $\phi _n(z)$ is an orthonormal polynomial with respect to a measure $\sigma \in S_\delta $ and $S_\delta $ is the Steklov class of probability measures $\sigma $ on the unit circle such that $\sigma '(\theta )\geq \delta /(2\pi )>0$ at every Lebesgue point of $\sigma $. There is an elementary estimate $M_n\lesssim \sqrt n$. E.A. Rakhmanov proved in 1981 that $M_n \gtrsim \sqrt n/ (\ln n)^{3/2}$. Our main result is that $M_n \gtrsim \sqrt n$, i.e., that the elementary estimate is sharp. The paper gives a survey of the results on the solution of this extremal problem and on the general problem of Steklov in the theory of orthogonal polynomials. The paper also analyzes the asymptotics of some trigonometric polynomials defined by Fejér convolutions. These polynomials can be used to construct asymptotic solutions to the extremal problem under consideration.
Funding agency Grant number
ОМН РАН 1
Russian Foundation for Basic Research 13-01-12430-ОФИ-м
11-01-00245
National Science Foundation DMS-1067413
Received: January 15, 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 289, Pages 72–95
DOI: https://doi.org/10.1134/S0081543815040057
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: A. I. Aptekarev, S. A. Denisov, D. N. Tulyakov, “V.A. Steklov's problem of estimating the growth of orthogonal polynomials”, Selected issues of mathematics and mechanics, Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov, Trudy Mat. Inst. Steklova, 289, MAIK Nauka/Interperiodica, Moscow, 2015, 83–106; Proc. Steklov Inst. Math., 289 (2015), 72–95
Citation in format AMSBIB
\Bibitem{AptDenTul15}
\by A.~I.~Aptekarev, S.~A.~Denisov, D.~N.~Tulyakov
\paper V.A.~Steklov's problem of estimating the growth of orthogonal polynomials
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 289
\pages 83--106
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3628}
\crossref{https://doi.org/10.1134/S0371968515020053}
\elib{https://elibrary.ru/item.asp?id=23738463}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 289
\pages 72--95
\crossref{https://doi.org/10.1134/S0081543815040057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358577300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938891216}
Linking options:
  • https://www.mathnet.ru/eng/tm3628
  • https://doi.org/10.1134/S0371968515020053
  • https://www.mathnet.ru/eng/tm/v289/p83
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :52
    References:43
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024