Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 289, Pages 206–226
DOI: https://doi.org/10.1134/S0371968515020120
(Mi tm3627)
 

This article is cited in 5 scientific papers (total in 5 papers)

On elementary theories of ordinal notation systems based on reflection principles

F. N. Pakhomov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (317 kB) Citations (5)
References:
Abstract: L.D. Beklemishev has recently introduced a constructive ordinal notation system for the ordinal $\varepsilon _0$. We consider this system and its fragments for smaller ordinals $\omega _n$ (towers of $\omega $-exponentiations of height $n$). These systems are based on Japaridze's well-known polymodal provability logic. They are used in the technique of ordinal analysis of the Peano arithmetic $\mathbf {PA}$ and its fragments on the basis of iterated reflection schemes. Ordinal notation systems can be regarded as models of the first-order language. We prove that the full notation system and its fragments for ordinals ${\ge }\,\omega _4$ have undecidable elementary theories. At the same time, the fragments of the full system for ordinals ${\le }\,\omega _3$ have decidable elementary theories. We also obtain results on decidability of the elementary theory for ordinal notation systems with weaker signatures.
Funding agency Grant number
Russian Science Foundation 14-50-00005
Received: March 15, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 289, Pages 194–212
DOI: https://doi.org/10.1134/S0081543815040124
Bibliographic databases:
Document Type: Article
UDC: 510.227
Language: Russian
Citation: F. N. Pakhomov, “On elementary theories of ordinal notation systems based on reflection principles”, Selected issues of mathematics and mechanics, Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov, Trudy Mat. Inst. Steklova, 289, MAIK Nauka/Interperiodica, Moscow, 2015, 206–226; Proc. Steklov Inst. Math., 289 (2015), 194–212
Citation in format AMSBIB
\Bibitem{Pak15}
\by F.~N.~Pakhomov
\paper On elementary theories of ordinal notation systems based on reflection principles
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 289
\pages 206--226
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3627}
\crossref{https://doi.org/10.1134/S0371968515020120}
\elib{https://elibrary.ru/item.asp?id=23738470}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 289
\pages 194--212
\crossref{https://doi.org/10.1134/S0081543815040124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358577300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938882322}
Linking options:
  • https://www.mathnet.ru/eng/tm3627
  • https://doi.org/10.1134/S0371968515020120
  • https://www.mathnet.ru/eng/tm/v289/p206
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024