Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 289, Pages 195–205
DOI: https://doi.org/10.1134/S0371968515020119
(Mi tm3619)
 

Perturbation theory for the stress tensor in the Moon's body with tidal effects taken into account

V. P. Pavlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: On the basis of the seismic data from the Apollo project, we show that one can use linear elasticity theory to process these data, which yields information on the mechanical parameters of the Moon's body with an accuracy of 10%. Within this theory, we obtain a theoretical formula for the dependence of pressure on depth in the Moon's body in the presence of tidal effects. We also derive theoretical dependence of the variations of the free energy density due to tidal effects on latitude and depth. In all these formulas the contribution of shear stresses is taken into account. It turns out that the main contribution is made by the Earth tides. Estimates for the dissipation of the energy of tidal oscillations show that this energy is certainly enough to explain where the energy released in deep focus moonquakes comes from.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: March 15, 2015
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 289, Pages 183–193
DOI: https://doi.org/10.1134/S0081543815040112
Bibliographic databases:
Document Type: Article
UDC: 550.348.32
Language: Russian
Citation: V. P. Pavlov, “Perturbation theory for the stress tensor in the Moon's body with tidal effects taken into account”, Selected issues of mathematics and mechanics, Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov, Trudy Mat. Inst. Steklova, 289, MAIK Nauka/Interperiodica, Moscow, 2015, 195–205; Proc. Steklov Inst. Math., 289 (2015), 183–193
Citation in format AMSBIB
\Bibitem{Pav15}
\by V.~P.~Pavlov
\paper Perturbation theory for the stress tensor in the Moon's body with tidal effects taken into account
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. In commemoration of the 150th anniversary of Academician Vladimir Andreevich Steklov
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 289
\pages 195--205
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3619}
\crossref{https://doi.org/10.1134/S0371968515020119}
\elib{https://elibrary.ru/item.asp?id=23738469}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 289
\pages 183--193
\crossref{https://doi.org/10.1134/S0081543815040112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358577300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938857953}
Linking options:
  • https://www.mathnet.ru/eng/tm3619
  • https://doi.org/10.1134/S0371968515020119
  • https://www.mathnet.ru/eng/tm/v289/p195
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :69
    References:47
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024