Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 288, Pages 209–223
DOI: https://doi.org/10.1134/S0371968515010148
(Mi tm3611)
 

This article is cited in 3 scientific papers (total in 3 papers)

A survey on tight Euclidean $t$-designs and tight relative $t$-designs in certain association schemes

Eiichi Bannaia, Etsuko Bannaib, Yan Zhua

a Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240 China
b Misakigaoka 2-8-21, Itoshima-shi, Fukuoka, 819-1136, Japan
Full-text PDF (233 kB) Citations (3)
References:
Abstract: It is known that there is a close analogy between the two relations "Euclidean $t$-designs vs. spherical $t$-designs" and "relative $t$-designs in binary Hamming association schemes vs. combinatorial $t$-designs." We first look at this analogy and survey the known results, putting emphasis on the study of tight relative $t$-designs in certain $Q$-polynomial association schemes. We then specifically study tight relative $2$-designs on two shells in binary Hamming association schemes $H(n,2)$ and Johnson association schemes $J(v,k)$. The purpose of this paper is to convince the reader that there is a rich theory even for these special cases and that the time is ripe to study tight relative $t$-designs more systematically for general $Q$-polynomial association schemes.
Funding agency Grant number
National Natural Science Foundation of China 11271257
The first author was supported in part by the NSFC grant no. 11271257.
Received in September 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 288, Pages 189–202
DOI: https://doi.org/10.1134/S0081543815010149
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: English
Citation: Eiichi Bannai, Etsuko Bannai, Yan Zhu, “A survey on tight Euclidean $t$-designs and tight relative $t$-designs in certain association schemes”, Geometry, topology, and applications, Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 288, MAIK Nauka/Interperiodica, Moscow, 2015, 209–223; Proc. Steklov Inst. Math., 288 (2015), 189–202
Citation in format AMSBIB
\Bibitem{BanBanZhu15}
\by Eiichi~Bannai, Etsuko~Bannai, Yan~Zhu
\paper A survey on tight Euclidean $t$-designs and tight relative $t$-designs in certain association schemes
\inbook Geometry, topology, and applications
\bookinfo Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 288
\pages 209--223
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3611}
\crossref{https://doi.org/10.1134/S0371968515010148}
\elib{https://elibrary.ru/item.asp?id=23302198}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 288
\pages 189--202
\crossref{https://doi.org/10.1134/S0081543815010149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353881900014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928730807}
Linking options:
  • https://www.mathnet.ru/eng/tm3611
  • https://doi.org/10.1134/S0371968515010148
  • https://www.mathnet.ru/eng/tm/v288/p209
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :103
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024