Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 239, Pages 98–105 (Mi tm361)  

This article is cited in 8 scientific papers (total in 8 papers)

Sails and Hilbert Bases

O. N. German

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (172 kB) Citations (8)
References:
Abstract: A sail is the boundary of a Klein polyhedron. A relation between certain properties of sails is determined. In particular, a criterion is presented for the Hilbert basis of the semigroup of integer points of a cone in $\mathbb R^3$ and $\mathbb R^4$ to be contained in the sail.
Received in March 2002
Bibliographic databases:
UDC: 511.9
Language: Russian
Citation: O. N. German, “Sails and Hilbert Bases”, Discrete geometry and geometry of numbers, Collected papers. Dedicated to the 70th birthday of professor Sergei Sergeevich Ryshkov, Trudy Mat. Inst. Steklova, 239, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 98–105; Proc. Steklov Inst. Math., 239 (2002), 88–95
Citation in format AMSBIB
\Bibitem{Ger02}
\by O.~N.~German
\paper Sails and Hilbert Bases
\inbook Discrete geometry and geometry of numbers
\bookinfo Collected papers. Dedicated to the 70th birthday of professor Sergei Sergeevich Ryshkov
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 239
\pages 98--105
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm361}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1975137}
\zmath{https://zbmath.org/?q=an:1068.52021}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 239
\pages 88--95
Linking options:
  • https://www.mathnet.ru/eng/tm361
  • https://www.mathnet.ru/eng/tm/v239/p98
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024