Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 287, Pages 211–233
DOI: https://doi.org/10.1134/S0371968514040128
(Mi tm3591)
 

This article is cited in 5 scientific papers (total in 5 papers)

Two-sided disorder problem for a Brownian motion in a Bayesian setting

A. A. Muravlevab, A. N. Shiryaevca

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b International Laboratory of Quantitative Finance, National Research University Higher School of Economics, Moscow, Russia
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
Full-text PDF (282 kB) Citations (5)
References:
Abstract: A two-sided disorder problem for a Brownian motion in a Bayesian setting is considered. It is shown how to reduce this problem to the standard optimal stopping problem for a posterior probability process. Qualitative properties of a solution are analyzed; namely, the concavity, continuity, and the smooth-fit principle for the risk function are proved. Optimal stopping boundaries are characterized as a unique solution to some integral equation.
Funding agency Grant number
Russian Science Foundation 14-21-00162
Russian Foundation for Basic Research 14-01-31468-mol_a
14-01-00739
The work was supported by the Russian Science Foundation, project no. 14-21-00162 (Sections 1-3), and by the Russian Foundation for Basic Research, project nos. 14-01-31468-mol_a and 14-01-00739 (Sections 4, 5).
Received in October 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 287, Issue 1, Pages 202–224
DOI: https://doi.org/10.1134/S0081543814080124
Bibliographic databases:
Document Type: Article
UDC: 519.244
Language: Russian
Citation: A. A. Muravlev, A. N. Shiryaev, “Two-sided disorder problem for a Brownian motion in a Bayesian setting”, Stochastic calculus, martingales, and their applications, Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 287, MAIK Nauka/Interperiodica, Moscow, 2014, 211–233; Proc. Steklov Inst. Math., 287:1 (2014), 202–224
Citation in format AMSBIB
\Bibitem{MurShi14}
\by A.~A.~Muravlev, A.~N.~Shiryaev
\paper Two-sided disorder problem for a~Brownian motion in a~Bayesian setting
\inbook Stochastic calculus, martingales, and their applications
\bookinfo Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 287
\pages 211--233
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3591}
\crossref{https://doi.org/10.1134/S0371968514040128}
\elib{https://elibrary.ru/item.asp?id=22681995}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 287
\issue 1
\pages 202--224
\crossref{https://doi.org/10.1134/S0081543814080124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348379600012}
\elib{https://elibrary.ru/item.asp?id=24030866}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921926836}
Linking options:
  • https://www.mathnet.ru/eng/tm3591
  • https://doi.org/10.1134/S0371968514040128
  • https://www.mathnet.ru/eng/tm/v287/p211
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:423
    Full-text PDF :90
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024