Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 287, Pages 129–139
DOI: https://doi.org/10.1134/S0371968514040086
(Mi tm3587)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the submartingale/supermartingale property of diffusions in natural scale

Alexander Gushchina, Mikhail Urusovb, Mihail Zervosc

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b Faculty of Mathematics, University of Duisburg-Essen, Essen, Germany
c Department of Mathematics, London School of Economics, London, UK
Full-text PDF (213 kB) Citations (6)
References:
Abstract: S. Kotani (2006) has characterised the martingale property of a one-dimensional diffusion in natural scale in terms of the classification of its boundaries. We complement this result by establishing a necessary and sufficient condition for a one-dimensional diffusion in natural scale to be a submartingale or a supermartingale. Furthermore, we study the asymptotic behaviour of the diffusion's expected state at time $t$ as $t\to\infty$. We illustrate our results by means of several examples.
Funding agency Grant number
Russian Science Foundation 14-21-00162
The first and second authors were supported by the Russian Science Foundation, project no. 14-21-00162.
Received in August 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 287, Issue 1, Pages 122–132
DOI: https://doi.org/10.1134/S0081543814080082
Bibliographic databases:
Document Type: Article
UDC: 519.217
Language: English
Citation: Alexander Gushchin, Mikhail Urusov, Mihail Zervos, “On the submartingale/supermartingale property of diffusions in natural scale”, Stochastic calculus, martingales, and their applications, Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 287, MAIK Nauka/Interperiodica, Moscow, 2014, 129–139; Proc. Steklov Inst. Math., 287:1 (2014), 122–132
Citation in format AMSBIB
\Bibitem{GusUruZer14}
\by Alexander~Gushchin, Mikhail~Urusov, Mihail~Zervos
\paper On the submartingale/supermartingale property of diffusions in natural scale
\inbook Stochastic calculus, martingales, and their applications
\bookinfo Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 287
\pages 129--139
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3587}
\crossref{https://doi.org/10.1134/S0371968514040086}
\elib{https://elibrary.ru/item.asp?id=22681991}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 287
\issue 1
\pages 122--132
\crossref{https://doi.org/10.1134/S0081543814080082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348379600008}
\elib{https://elibrary.ru/item.asp?id=24030809}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921905827}
Linking options:
  • https://www.mathnet.ru/eng/tm3587
  • https://doi.org/10.1134/S0371968514040086
  • https://www.mathnet.ru/eng/tm/v287/p129
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024