Abstract:
S. Kotani (2006) has characterised the martingale property of a one-dimensional diffusion in natural scale in terms of the classification of its boundaries. We complement this result by establishing a necessary and sufficient condition for a one-dimensional diffusion in natural scale to be a submartingale or a supermartingale. Furthermore, we study the asymptotic behaviour of the diffusion's expected state at time t as t→∞. We illustrate our results by means of several examples.
Citation:
Alexander Gushchin, Mikhail Urusov, Mihail Zervos, “On the submartingale/supermartingale property of diffusions in natural scale”, Stochastic calculus, martingales, and their applications, Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 287, MAIK Nauka/Interperiodica, Moscow, 2014, 129–139; Proc. Steklov Inst. Math., 287:1 (2014), 122–132
\Bibitem{GusUruZer14}
\by Alexander~Gushchin, Mikhail~Urusov, Mihail~Zervos
\paper On the submartingale/supermartingale property of diffusions in natural scale
\inbook Stochastic calculus, martingales, and their applications
\bookinfo Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 287
\pages 129--139
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3587}
\crossref{https://doi.org/10.1134/S0371968514040086}
\elib{https://elibrary.ru/item.asp?id=22681991}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 287
\issue 1
\pages 122--132
\crossref{https://doi.org/10.1134/S0081543814080082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348379600008}
\elib{https://elibrary.ru/item.asp?id=24030809}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921905827}
Linking options:
https://www.mathnet.ru/eng/tm3587
https://doi.org/10.1134/S0371968514040086
https://www.mathnet.ru/eng/tm/v287/p129
This publication is cited in the following 6 articles:
Ankirchner S., Kruse T., Urusov M., “Wasserstein Convergence Rates For Random BIT Approximations of Continuous Markov Processes”, J. Math. Anal. Appl., 493:2 (2021), 124543
A. Jacquier, M. Keller-Ressel, “Implied volatility in strict local martingale models”, SIAM J. Financ. Math., 9:1 (2018), 171–189
Yu. Shimizu, F. Nakano, “A remark on conditions that a diffusion in the natural scale is a martingale”, Osaka J. Math., 55:2 (2018), 385–391
M. Urusov, M. Zervos, “Necessary and sufficient conditions for the $r$-excessive local martingales to be martingales”, Electron. Commun. Probab., 22 (2017)
A. A. Gushchin, M. A. Urusov, “Processes that can be embedded in a geometric Brownian motion”, Theory Probab. Appl., 60:2 (2016), 246–262
D. Hobson, “Integrability of solutions of the Skorokhod embedding problem for diffusions”, Electron. J. Probab., 20 (2015), 83