Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 287, Pages 242–266
DOI: https://doi.org/10.1134/S0371968514040141
(Mi tm3582)
 

This article is cited in 1 scientific paper (total in 1 paper)

Critical dimension in the semiparametric Bernstein–von Mises theorem

Maxim E. Panovabc, Vladimir G. Spokoinyade

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
b Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
c Datadvance Company, Moscow, Russia
d Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
e Humboldt-Universität zu Berlin, Berlin, Germany
Full-text PDF (344 kB) Citations (1)
References:
Abstract: The classical parametric and semiparametric Bernstein–von Mises (BvM) results are reconsidered in a nonclassical setup allowing finite samples and model misspecification. In the parametric case and in the case of a finite-dimensional nuisance parameter, we establish an upper bound on the error of Gaussian approximation of the posterior distribution of the target parameter; the bound depends explicitly on the dimension of the full and target parameters and on the sample size. This helps to identify the so-called critical dimension $p_n$ of the full parameter for which the BvM result is applicable. In the important special i.i.d. case, we show that the condition "$p_n^3/n$ is small" is sufficient for the BvM result to be valid under general assumptions on the model. We also provide an example of a model with the phase transition effect: the statement of the BvM theorem fails when the dimension $p_n$ approaches $n^{1/3}$.
Received in June 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 287, Issue 1, Pages 232–255
DOI: https://doi.org/10.1134/S0081543814080148
Bibliographic databases:
Document Type: Article
UDC: 519.22
Language: Russian
Citation: Maxim E. Panov, Vladimir G. Spokoiny, “Critical dimension in the semiparametric Bernstein–von Mises theorem”, Stochastic calculus, martingales, and their applications, Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 287, MAIK Nauka/Interperiodica, Moscow, 2014, 242–266; Proc. Steklov Inst. Math., 287:1 (2014), 232–255
Citation in format AMSBIB
\Bibitem{PanSpo14}
\by Maxim~E.~Panov, Vladimir~G.~Spokoiny
\paper Critical dimension in the semiparametric Bernstein--von~Mises theorem
\inbook Stochastic calculus, martingales, and their applications
\bookinfo Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 287
\pages 242--266
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3582}
\crossref{https://doi.org/10.1134/S0371968514040141}
\elib{https://elibrary.ru/item.asp?id=22681997}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 287
\issue 1
\pages 232--255
\crossref{https://doi.org/10.1134/S0081543814080148}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348379600014}
\elib{https://elibrary.ru/item.asp?id=24030790}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921899704}
Linking options:
  • https://www.mathnet.ru/eng/tm3582
  • https://doi.org/10.1134/S0371968514040141
  • https://www.mathnet.ru/eng/tm/v287/p242
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :74
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024