Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 287, Pages 310–319
DOI: https://doi.org/10.1134/S0371968514040189
(Mi tm3578)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the existence of solutions of unbounded optimal stopping problems

M. V. Zhitlukhinab, A. N. Shiryaevca

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b International Laboratory of Quantitative Finance, National Research University Higher School of Economics, Moscow, Russia
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
Full-text PDF (217 kB) Citations (3)
References:
Abstract: Known conditions of existence of solutions of optimal stopping problems for Markov processes assume that payoff functions are bounded in some sense. In this paper we prove weaker conditions which are applicable to unbounded payoff functions. The results obtained are applied to the optimal stopping problem for a Brownian motion with the payoff function $G(\tau,B_\tau)=|B_\tau|-c/(1-\tau)$.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-31468-mol_a
14-01-00739
Russian Science Foundation 14-21-00162
The first author was supported by the Russian Foundation for Basic Research, project nos. 14-01-31468-mol_a and 14-01-00739. The second author was supported by the Russian Science Foundation, project no. 14-21-00162.
Received in October 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 287, Issue 1, Pages 299–307
DOI: https://doi.org/10.1134/S0081543814080185
Bibliographic databases:
Document Type: Article
UDC: 519.244
Language: Russian
Citation: M. V. Zhitlukhin, A. N. Shiryaev, “On the existence of solutions of unbounded optimal stopping problems”, Stochastic calculus, martingales, and their applications, Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 287, MAIK Nauka/Interperiodica, Moscow, 2014, 310–319; Proc. Steklov Inst. Math., 287:1 (2014), 299–307
Citation in format AMSBIB
\Bibitem{ZhiShi14}
\by M.~V.~Zhitlukhin, A.~N.~Shiryaev
\paper On the existence of solutions of unbounded optimal stopping problems
\inbook Stochastic calculus, martingales, and their applications
\bookinfo Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 287
\pages 310--319
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3578}
\crossref{https://doi.org/10.1134/S0371968514040189}
\elib{https://elibrary.ru/item.asp?id=22682001}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 287
\issue 1
\pages 299--307
\crossref{https://doi.org/10.1134/S0081543814080185}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348379600018}
\elib{https://elibrary.ru/item.asp?id=24030791}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921900349}
Linking options:
  • https://www.mathnet.ru/eng/tm3578
  • https://doi.org/10.1134/S0371968514040189
  • https://www.mathnet.ru/eng/tm/v287/p310
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :87
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024