Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 287, Pages 279–299
DOI: https://doi.org/10.1134/S0371968514040165
(Mi tm3574)
 

This article is cited in 8 scientific papers (total in 8 papers)

Nearly optimal sequential tests of composite hypotheses revisited

Alexander G. Tartakovsky

Department of Statistics, University of Connecticut, Storrs, CT 06269-4120, USA
Full-text PDF (313 kB) Citations (8)
References:
Abstract: We revisit the problem of sequential testing composite hypotheses, considering multiple hypotheses and very general non-i.i.d. stochastic models. Two sequential tests are studied: the multihypothesis generalized sequential likelihood ratio test and the multihypothesis adaptive sequential likelihood ratio test with one-stage delayed estimators. While the latter loses information compared to the former, it has an advantage in designing thresholds to guarantee given upper bounds for probabilities of errors, which is practically impossible for the generalized likelihood ratio type tests. It is shown that both tests have asymptotic optimality properties minimizing the expected sample size or even more generally higher moments of the stopping time as probabilities of errors vanish. Two examples that illustrate the general theory are presented.
Received in April 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 287, Issue 1, Pages 268–288
DOI: https://doi.org/10.1134/S0081543814080161
Bibliographic databases:
Document Type: Article
UDC: 519.244
Language: English
Citation: Alexander G. Tartakovsky, “Nearly optimal sequential tests of composite hypotheses revisited”, Stochastic calculus, martingales, and their applications, Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 287, MAIK Nauka/Interperiodica, Moscow, 2014, 279–299; Proc. Steklov Inst. Math., 287:1 (2014), 268–288
Citation in format AMSBIB
\Bibitem{Tar14}
\by Alexander~G.~Tartakovsky
\paper Nearly optimal sequential tests of composite hypotheses revisited
\inbook Stochastic calculus, martingales, and their applications
\bookinfo Collected papers. Dedicated to Academician Albert Nikolaevich Shiryaev on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 287
\pages 279--299
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3574}
\crossref{https://doi.org/10.1134/S0371968514040165}
\elib{https://elibrary.ru/item.asp?id=22681999}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 287
\issue 1
\pages 268--288
\crossref{https://doi.org/10.1134/S0081543814080161}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348379600016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921909568}
Linking options:
  • https://www.mathnet.ru/eng/tm3574
  • https://doi.org/10.1134/S0371968514040165
  • https://www.mathnet.ru/eng/tm/v287/p279
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :77
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024