Abstract:
In this note, it is shown that the only moment–angle complexes which are rationally elliptic are those which are products of odd spheres and a disk.
Citation:
A. Bahri, M. Bendersky, F. R. Cohen, S. Gitler, “On the rational type of moment–angle complexes”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 241–245; Proc. Steklov Inst. Math., 286 (2014), 219–223
\Bibitem{BahBenCoh14}
\by A.~Bahri, M.~Bendersky, F.~R.~Cohen, S.~Gitler
\paper On the rational type of moment--angle complexes
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 241--245
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3571}
\crossref{https://doi.org/10.1134/S0371968514030121}
\elib{https://elibrary.ru/item.asp?id=22020641}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 219--223
\crossref{https://doi.org/10.1134/S0081543814060121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343605900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919800593}
Linking options:
https://www.mathnet.ru/eng/tm3571
https://doi.org/10.1134/S0371968514030121
https://www.mathnet.ru/eng/tm/v286/p241
This publication is cited in the following 2 articles:
Ya. Hao, Q. Sun, S. Theriault, “Moore's conjecture for polyhedral products”, Math. Proc. Camb. Philos. Soc., 167:1 (2019), 23–33
A. Bahri, M. Bendersky, F. R. Cohen, S. Gitler, “On the free loop spaces of a toric space”, Bol. Soc. Mat. Mex., 23:1, SI (2017), 257–265