Abstract:
We study the geometry of compact complex manifolds $M$ equipped with a maximal action of a torus $T=(S^1)^k$. We present two equivalent constructions that allow one to build any such manifold on the basis of special combinatorial data given by a simplicial fan $\Sigma$ and a complex subgroup $H\subset T_\mathbb C=(\mathbb C^*)^k$. On every manifold $M$ we define a canonical holomorphic foliation $\mathcal F$ and, under additional restrictions on the combinatorial data, construct a transverse Kähler form $\omega _\mathcal F$. As an application of these constructions, we extend some results on the geometry of moment–angle manifolds to the case of manifolds $M$.
Citation:
Yu. M. Ustinovsky, “Geometry of compact complex manifolds with maximal torus action”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 219–230; Proc. Steklov Inst. Math., 286 (2014), 198–208
\Bibitem{Ust14}
\by Yu.~M.~Ustinovsky
\paper Geometry of compact complex manifolds with maximal torus action
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 219--230
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3570}
\crossref{https://doi.org/10.1134/S0371968514030108}
\elib{https://elibrary.ru/item.asp?id=22020639}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 198--208
\crossref{https://doi.org/10.1134/S0081543814060108}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343605900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919790066}
Linking options:
https://www.mathnet.ru/eng/tm3570
https://doi.org/10.1134/S0371968514030108
https://www.mathnet.ru/eng/tm/v286/p219
This publication is cited in the following 6 articles:
Galaz-Garcia F., Kerin M., Radeschi M., “Torus Actions on Rationally Elliptic Manifolds”, Math. Z., 297:1-2 (2021), 197–221
F. Battaglia, E. Prato, D. Zaffran, “Hirzebruch surfaces in a one-parameter family”, Boll. Unione Mat. Ital., 12:1-2 (2019), 293–305
F. Galaz-Garcia, M. Kerin, M. Radeschi, M. Wiemeler, “Torus orbifolds, slice-maximal torus actions, and rational ellipticity”, Int. Math. Res. Notices, 2018, no. 18, 5786–5822