Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 286, Pages 347–367
DOI: https://doi.org/10.1134/S0371968514030194
(Mi tm3568)
 

This article is cited in 3 scientific papers (total in 3 papers)

Smooth projective toric variety representatives in complex cobordism

Andrew Wilfong

Department of Mathematics, Eastern Michigan University, Ypsilanti, MI 48197, USA
Full-text PDF (296 kB) Citations (3)
References:
Abstract: A general problem in complex cobordism theory is to find useful representatives for cobordism classes. One particularly convenient class of complex manifolds consists of smooth projective toric varieties. The bijective correspondence between these varieties and smooth polytopes allows us to examine which complex cobordism classes contain a smooth projective toric variety by studying the combinatorics of polytopes. These combinatorial properties determine obstructions to a complex cobordism class containing a smooth projective toric variety. However, the obstructions are only necessary conditions, and the actual distribution of smooth projective toric varieties in complex cobordism appears to be quite complicated. The techniques used here provide descriptions of smooth projective toric varieties in low-dimensional cobordism.
Received in December 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 286, Pages 324–344
DOI: https://doi.org/10.1134/S0081543814060194
Bibliographic databases:
Document Type: Article
UDC: 515.142.426
Language: English
Citation: Andrew Wilfong, “Smooth projective toric variety representatives in complex cobordism”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 347–367; Proc. Steklov Inst. Math., 286 (2014), 324–344
Citation in format AMSBIB
\Bibitem{Wil14}
\by Andrew~Wilfong
\paper Smooth projective toric variety representatives in complex cobordism
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 347--367
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3568}
\crossref{https://doi.org/10.1134/S0371968514030194}
\elib{https://elibrary.ru/item.asp?id=22020648}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 324--344
\crossref{https://doi.org/10.1134/S0081543814060194}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343605900019}
\elib{https://elibrary.ru/item.asp?id=24702368}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919799105}
Linking options:
  • https://www.mathnet.ru/eng/tm3568
  • https://doi.org/10.1134/S0371968514030194
  • https://www.mathnet.ru/eng/tm/v286/p347
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024