Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 286, Pages 291–307
DOI: https://doi.org/10.1134/S0371968514030169
(Mi tm3563)
 

This article is cited in 22 scientific papers (total in 22 papers)

Convex bodies and multiplicities of ideals

Kiumars Kaveha, Askold Khovanskiibcd

a Department of Mathematics, School of Arts and Sciences, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA
b Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario, M5S 2E4 Canada
c Independent University of Moscow, Bol'shoi Vlas'evskii per. 11, Moscow, 119002 Russia
d Institute for Systems Analysis, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 9, Moscow, 117312 Russia
References:
Abstract: We associate convex regions in $\mathbb R^n$ to $\mathfrak m$-primary graded sequences of subspaces, in particular $\mathfrak m$-primary graded sequences of ideals, in a large class of local algebras (including analytically irreducible local domains). These convex regions encode information about Samuel multiplicities. This is in the spirit of the theory of Gröbner bases and Newton polyhedra on the one hand, and the theory of Newton–Okounkov bodies for linear systems on the other hand. We use this to give a new proof as well as a generalization of a Brunn–Minkowski inequality for multiplicities due to Teissier and Rees–Sharp.
Received in April 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 286, Pages 268–284
DOI: https://doi.org/10.1134/S0081543814060169
Bibliographic databases:
Document Type: Article
UDC: 514.172.45
Language: English
Citation: Kiumars Kaveh, Askold Khovanskii, “Convex bodies and multiplicities of ideals”, Algebraic topology, convex polytopes, and related topics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 286, MAIK Nauka/Interperiodica, Moscow, 2014, 291–307; Proc. Steklov Inst. Math., 286 (2014), 268–284
Citation in format AMSBIB
\Bibitem{KavKho14}
\by Kiumars~Kaveh, Askold~Khovanskii
\paper Convex bodies and multiplicities of ideals
\inbook Algebraic topology, convex polytopes, and related topics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 286
\pages 291--307
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3563}
\crossref{https://doi.org/10.1134/S0371968514030169}
\elib{https://elibrary.ru/item.asp?id=22020645}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 286
\pages 268--284
\crossref{https://doi.org/10.1134/S0081543814060169}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343605900016}
\elib{https://elibrary.ru/item.asp?id=24022381}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919797533}
Linking options:
  • https://www.mathnet.ru/eng/tm3563
  • https://doi.org/10.1134/S0371968514030169
  • https://www.mathnet.ru/eng/tm/v286/p291
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :69
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024