Abstract:
This paper is a brief survey of applications of the p-adic equation of ultrametric random walk to the description of conformational dynamics of protein molecules. Two main experiments are considered that determine the properties of the fluctuation dynamic mobility of protein molecules from 300 to 4 K: the studies of the kinetics of CO binding to myoglobin and spectral diffusion in proteins. It is shown that an ultrametric description allows one to build a unified picture of the conformational mobility of a protein molecule in the whole range of the indicated temperatures and realize the fact that it varies in a self-similar way. This feature of protein molecules, which has remained hidden to date, significantly expands the idea of the structure of nanoscale systems related to the family of molecular machines.
Citation:
V. A. Avetisov, A. Kh. Bikulov, A. P. Zubarev, “Ultrametric random walk and dynamics of protein molecules”, Selected topics of mathematical physics and analysis, Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth, Trudy Mat. Inst. Steklova, 285, MAIK Nauka/Interperiodica, Moscow, 2014, 9–32; Proc. Steklov Inst. Math., 285 (2014), 3–25
\Bibitem{AveBikZub14}
\by V.~A.~Avetisov, A.~Kh.~Bikulov, A.~P.~Zubarev
\paper Ultrametric random walk and dynamics of protein molecules
\inbook Selected topics of mathematical physics and analysis
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 285
\pages 9--32
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3553}
\crossref{https://doi.org/10.1134/S0371968514020022}
\elib{https://elibrary.ru/item.asp?id=21726838}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 285
\pages 3--25
\crossref{https://doi.org/10.1134/S0081543814040026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339949700002}
\elib{https://elibrary.ru/item.asp?id=24048332}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926283215}
Linking options:
https://www.mathnet.ru/eng/tm3553
https://doi.org/10.1134/S0371968514020022
https://www.mathnet.ru/eng/tm/v285/p9
This publication is cited in the following 15 articles:
David Weisbart, “p-adic Brownian motion is a scaling limit”, J. Phys. A: Math. Theor., 57:20 (2024), 205203
A. Kh. Bikulov, A. P. Zubarev, “Power Laws and Logarithmic Oscillations in Diffusion Processes on Discrete Ultrametric Spaces”, P-Adic Num Ultrametr Anal Appl, 16:4 (2024), 327
W.A. Zúñiga-Galindo, “Ultrametric diffusion, rugged energy landscapes and transition networks”, Physica A: Statistical Mechanics and its Applications, 597 (2022), 127221
Bikulov A.Kh., Zubarev A.P., “Ultrametric Theory of Conformational Dynamics of Protein Molecules in a Functional State and the Description of Experiments on the Kinetics of Co Binding to Myoglobin”, Physica A, 583 (2021), 126280
Velasquez-Rodriguez J.P., “Hormander Classes of Pseudo-Differential Operators Over the Compact Group of P-Adic Integers”, P-Adic Numbers Ultrametric Anal. Appl., 12:2 (2020), 134–162
A. Kh. Bikulov, A. P. Zubarev, “New Bases in the Space of Square Integrable Functions on the Field of pp-Adic Numbers and Their Applications”, Proc. Steklov Inst. Math., 306 (2019), 20–32
D. A. Dawson, L. G. Gorostiza, “Transience and recurrence of random walks on percolation clusters in an ultrametric space”, J. Theor. Probab., 31:1 (2018), 494–526
A. Kh. Bikulov, A. P. Zubarev, “Model of pp -adic random walk in a potential”, P-Adic Numbers Ultrametric Anal. Appl., 10:2 (2018), 130–150
D. A. Dawson, L. G. Gorostiza, “Random systems in ultrametric spaces”, Adv. Appl. Probab., 50:A (2018), 83–97
B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, E. I. Zelenov, “pp-Adic mathematical physics: the first 30 years”, P-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121
V. Avetisov, P. L. Krapivsky, S. Nechaev, “Native ultrametricity of sparse random ensembles”, J. Phys. A-Math. Theor., 49:3 (2016), 035101
A. Kh. Bikulov, A. P. Zubarev, “Complete systems of eigenfunctions of the Vladimirov operator in L2(Br)L2(Br) and L2(Qp)”, J. Math. Sci., 237:3 (2019), 362–374
O. M. Sizova, “Ultrametricheskaya diffuziya v silnom tsentralno-simmetrichnom pole”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 87–104
S. V. Kozyrev, “Ultrametricity in the theory of complex systems”, Theoret. and Math. Phys., 185:2 (2015), 1665–1677