Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Volume 285, Pages 64–88
DOI: https://doi.org/10.1134/S037196851402006X
(Mi tm3551)
 

This article is cited in 9 scientific papers (total in 9 papers)

Universal boundary value problem for equations of mathematical physics

I. V. Volovicha, V. Zh. Sakbaevb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Russia
Full-text PDF (312 kB) Citations (9)
References:
Abstract: A new statement of a boundary value problem for partial differential equations is discussed. An arbitrary solution to a linear elliptic, hyperbolic, or parabolic second-order differential equation is considered in a given domain of Euclidean space without any constraints imposed on the boundary values of the solution or its derivatives. The following question is studied: What conditions should hold for the boundary values of a function and its normal derivative if this function is a solution to the linear differential equation under consideration? A linear integral equation is defined for the boundary values of a solution and its normal derivative; this equation is called a universal boundary value equation. A universal boundary value problem is a linear differential equation together with a universal boundary value equation. In this paper, the universal boundary value problem is studied for equations of mathematical physics such as the Laplace equation, wave equation, and heat equation. Applications of the analysis of the universal boundary value problem to problems of cosmology and quantum mechanics are pointed out.
Funding agency Grant number
Russian Science Foundation 14-11-00687
This work was supported by the Russian Science Foundation, project no. 14-11-00687.
Received in February 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2014, Volume 285, Pages 56–80
DOI: https://doi.org/10.1134/S0081543814040063
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: I. V. Volovich, V. Zh. Sakbaev, “Universal boundary value problem for equations of mathematical physics”, Selected topics of mathematical physics and analysis, Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth, Trudy Mat. Inst. Steklova, 285, MAIK Nauka/Interperiodica, Moscow, 2014, 64–88; Proc. Steklov Inst. Math., 285 (2014), 56–80
Citation in format AMSBIB
\Bibitem{VolSak14}
\by I.~V.~Volovich, V.~Zh.~Sakbaev
\paper Universal boundary value problem for equations of mathematical physics
\inbook Selected topics of mathematical physics and analysis
\bookinfo Collected papers. In commemoration of the 90th anniversary of Academician Vasilii Sergeevich Vladimirov's birth
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 285
\pages 64--88
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3551}
\crossref{https://doi.org/10.1134/S037196851402006X}
\elib{https://elibrary.ru/item.asp?id=21726842}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 285
\pages 56--80
\crossref{https://doi.org/10.1134/S0081543814040063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339949700006}
\elib{https://elibrary.ru/item.asp?id=24048406}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926306257}
Linking options:
  • https://www.mathnet.ru/eng/tm3551
  • https://doi.org/10.1134/S037196851402006X
  • https://www.mathnet.ru/eng/tm/v285/p64
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:621
    Full-text PDF :141
    References:125
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024