Abstract:
We prove that if X is a real Banach space, Y1⊂Y2⊂… is a sequence of strictly embedded closed linear subspaces of X, and d1⩾d2⩾… is a nonincreasing sequence converging to zero, then there exists an element x∈X such that the distance ρ(x,Yn) from x to Yn satisfies the inequalities dn⩽ρ(x,Yn)⩽8dn for n=1,2,….
This work was supported by the Russian Foundation for Basic Research (project no. 11-01-00329) and by a grant of the President of the Russian Federation (project no. NSh-6003.2012.1).
Citation:
S. V. Konyagin, “Deviation of elements of a Banach space from a system of subspaces”, Function spaces and related problems of analysis, Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 212–215; Proc. Steklov Inst. Math., 284 (2014), 204–207
\Bibitem{Kon14}
\by S.~V.~Konyagin
\paper Deviation of elements of a~Banach space from a~system of subspaces
\inbook Function spaces and related problems of analysis
\bookinfo Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2014
\vol 284
\pages 212--215
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3536}
\crossref{https://doi.org/10.1134/S0371968514010142}
\elib{https://elibrary.ru/item.asp?id=21249113}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 284
\pages 204--207
\crossref{https://doi.org/10.1134/S0081543814010143}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335559000013}
\elib{https://elibrary.ru/item.asp?id=21876555}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899804838}
Linking options:
https://www.mathnet.ru/eng/tm3536
https://doi.org/10.1134/S0371968514010142
https://www.mathnet.ru/eng/tm/v284/p212
This publication is cited in the following 6 articles:
Yu. A. Skvortsov, “On the Existence of an Element with Given Deviations from an Expanding System of Subspaces”, Math. Notes, 114:5 (2023), 949–956
Petr A. Borodin, Eva Kopecká, “Sequences of m-term deviations in Hilbert space”, Journal of Approximation Theory, 284 (2022), 105821
B. S. Kashin, Yu. V. Malykhin, V. Yu. Protasov, K. S. Ryutin, I. D. Shkredov, “Sergei Vladimirovich Konyagin turns 60”, Proc. Steklov Inst. Math., 303 (2018), 1–9
Asuman Güven Aksoy, Springer Proceedings in Mathematics & Statistics, 264, Algebra, Complex Analysis, and Pluripotential Theory, 2018, 13
A. G. Aksoy, M. Al-Ansari, C. Case, Q. Peng, “Subspace condition for Bernstein's lethargy theorem”, Turk. J. Math., 41:5 (2017), 1101–1107
A. G. Aksoy, G. Lewicki, “_orig bernstein's lethargy theorem in frechet spaces”, J. Approx. Theory, 209 (2016), 58–77