|
This article is cited in 12 scientific papers (total in 12 papers)
On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function
K. O. Besov Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
Abstract:
We consider a class of infinite-horizon optimal control problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of that kind the initial state is fixed, no constraints are imposed on the behavior of the admissible trajectories at infinity, and the objective functional is given by a discounted improper integral. Earlier, for such problems, S. M. Aseev and A. V. Kryazhimskiy in 2004–2007 and jointly with the author in 2012 developed a method of finite-horizon approximations and obtained variants of the Pontryagin maximum principle that guarantee normality of the problem and contain an explicit formula for the adjoint variable. In the present paper those results are extended to a more general situation where the instantaneous utility function need not be locally bounded from below. As an important illustrative example, we carry out a rigorous mathematical investigation of the transitional dynamics in the neoclassical model of optimal economic growth.
Received in June 2013
Citation:
K. O. Besov, “On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function”, Function spaces and related problems of analysis, Collected papers. Dedicated to Oleg Vladimirovich Besov, corresponding member of the Russian Academy of Sciences, on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 284, MAIK Nauka/Interperiodica, Moscow, 2014, 56–88; Proc. Steklov Inst. Math., 284 (2014), 50–80
Linking options:
https://www.mathnet.ru/eng/tm3517https://doi.org/10.1134/S037196851401004X https://www.mathnet.ru/eng/tm/v284/p56
|
|