Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Volume 283, Pages 188–203
DOI: https://doi.org/10.1134/S0371968513040134
(Mi tm3515)
 

This article is cited in 6 scientific papers (total in 6 papers)

Uniform stability of the inverse Sturm–Liouville problem with respect to the spectral function in the scale of Sobolev spaces

A. M. Savchuk, A. A. Shkalikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
Full-text PDF (276 kB) Citations (6)
References:
Abstract: We consider the inverse problem of recovering the potential for the Sturm–Liouville operator $Ly=-y''+q(x)y$ on the interval $[0,\pi]$ from the spectrum of the Dirichlet problem and norming constants (from the spectral function). For a fixed $\theta\geq0$, with this problem we associate a map $F\colon W^\theta_2\to l^\theta_\mathrm D$, $F(\sigma)=\{s_k\}_1^\infty$, where $W^\theta_2= W^\theta_2[0,\pi]$ is the Sobolev space, $\sigma=\int q$ is a primitive of the potential $q\in W^{\theta-1}_2$, and $l^\theta _\mathrm D$ is a specially constructed finite-dimensional extension of the weighted space $l^\theta_2$; this extension contains the regularized spectral data $\mathbf s=\{s_k\}_1^\infty$ for the problem of recovering the potential from the spectral function. The main result consists in proving both lower and upper uniform estimates for the norm of the difference $\|\sigma-\sigma_1\|_\theta$ in terms of the $l^\theta_\mathrm D$ norm of the difference of the regularized spectral data $\|\mathbf s-\mathbf s_1\|_\theta$. The result is new even for the classical case $q\in L_2$, which corresponds to the case of $\theta=1$.
Received in March 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2013, Volume 283, Pages 181–196
DOI: https://doi.org/10.1134/S0081543813080130
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. M. Savchuk, A. A. Shkalikov, “Uniform stability of the inverse Sturm–Liouville problem with respect to the spectral function in the scale of Sobolev spaces”, Function theory and equations of mathematical physics, Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth, Trudy Mat. Inst. Steklova, 283, MAIK Nauka/Interperiodica, Moscow, 2013, 188–203; Proc. Steklov Inst. Math., 283 (2013), 181–196
Citation in format AMSBIB
\Bibitem{SavShk13}
\by A.~M.~Savchuk, A.~A.~Shkalikov
\paper Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
\inbook Function theory and equations of mathematical physics
\bookinfo Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 283
\pages 188--203
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3515}
\crossref{https://doi.org/10.1134/S0371968513040134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3479956}
\elib{https://elibrary.ru/item.asp?id=20783239}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 283
\pages 181--196
\crossref{https://doi.org/10.1134/S0081543813080130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330983000012}
\elib{https://elibrary.ru/item.asp?id=20427538}
Linking options:
  • https://www.mathnet.ru/eng/tm3515
  • https://doi.org/10.1134/S0371968513040134
  • https://www.mathnet.ru/eng/tm/v283/p188
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :102
    References:92
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024