Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Volume 283, Pages 115–120
DOI: https://doi.org/10.1134/S0371968513040080
(Mi tm3511)
 

This article is cited in 2 scientific papers (total in 2 papers)

Necessary and sufficient conditions for a generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with $p\geq1$

V. A. Il'inab, A. A. Kuleshova

a Lomonosov Moscow State University, Moscow, Russia
b Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (147 kB) Citations (2)
References:
Abstract: We establish necessary and sufficient conditions on the boundary function under which a generalized solution to the initial–boundary value problem for the wave equation with boundary conditions of the first kind belongs to $W^1_p$.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-12472-ofi_m
12-01-13113-ofi-m-rzhd
12-01-31169-mol_a
Ministry of Education and Science of the Russian Federation 8209
MK-4626.2013.1
This work was supported by the Russian Foundation for Basic Research (project nos. 13-01-12472-ofi_m2, 12-01-13113-ofi-m-rzhd, and 12-01-31169-mol_a), by the Ministry of Education and Science of the Russian Federation (project no. 8209), and by a grant of the President of the Russian Federation (project no. MK-4626.2013.1).
Received in February 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2013, Volume 283, Pages 110–115
DOI: https://doi.org/10.1134/S0081543813080087
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. A. Il'in, A. A. Kuleshov, “Necessary and sufficient conditions for a generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with $p\geq1$”, Function theory and equations of mathematical physics, Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth, Trudy Mat. Inst. Steklova, 283, MAIK Nauka/Interperiodica, Moscow, 2013, 115–120; Proc. Steklov Inst. Math., 283 (2013), 110–115
Citation in format AMSBIB
\Bibitem{IliKul13}
\by V.~A.~Il'in, A.~A.~Kuleshov
\paper Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$
\inbook Function theory and equations of mathematical physics
\bookinfo Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 283
\pages 115--120
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3511}
\crossref{https://doi.org/10.1134/S0371968513040080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3479951}
\elib{https://elibrary.ru/item.asp?id=20783233}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 283
\pages 110--115
\crossref{https://doi.org/10.1134/S0081543813080087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330983000007}
Linking options:
  • https://www.mathnet.ru/eng/tm3511
  • https://doi.org/10.1134/S0371968513040080
  • https://www.mathnet.ru/eng/tm/v283/p115
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :72
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024