Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 238, Pages 158–195 (Mi tm351)  

This article is cited in 9 scientific papers (total in 9 papers)

On the Deligne–Simpson Problem

V. P. Kostov

Université de Nice Sophia Antipolis
Full-text PDF (489 kB) Citations (9)
References:
Abstract: The Deligne–Simpson problem is formulated as follows: \textit{give necessary and sufficient conditions for the choice of the conjugacy classes $C_j\subset SL(n,\mathbb C)$ or $c_j\subset sl(n,\mathbb C)$ so that there exist irreducible $(p+1)$-tuples of matrices $M_j\in C_j$ or $A_j\in c_j$ satisfying the equality $M_1\ldots M_{p+1}=I$ or $A_1+\ldots +A_{p+1}=0$}. We solve the problem for generic eigenvalues with the exception of the case of matrices $M_j$ when the greatest common divisor of the numbers $\Sigma _{j,l}(\sigma )$ of Jordan blocks of a given matrix $M_j$, with a given eigenvalue $\sigma$ and of a given size $l$ (taken over all $j$$\sigma$$l$), is $>1$. Generic eigenvalues are defined by explicit algebraic inequalities. For such eigenvalues, there exist no reducible $(p+1)$-tuples. The matrices $M_j$ and $A_j$ are interpreted as monodromy operators of regular linear systems and as matrices–residua of Fuchsian ones on Riemann's sphere.
Received in September 2001
Bibliographic databases:
UDC: 517.927.7
Language: English
Citation: V. P. Kostov, “On the Deligne–Simpson Problem”, Monodromy in problems of algebraic geometry and differential equations, Collected papers, Trudy Mat. Inst. Steklova, 238, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 158–195; Proc. Steklov Inst. Math., 238 (2002), 148–185
Citation in format AMSBIB
\Bibitem{Kos02}
\by V.~P.~Kostov
\paper On the Deligne--Simpson Problem
\inbook Monodromy in problems of algebraic geometry and differential equations
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 238
\pages 158--195
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1969311}
\zmath{https://zbmath.org/?q=an:1036.34106}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 238
\pages 148--185
Linking options:
  • https://www.mathnet.ru/eng/tm351
  • https://www.mathnet.ru/eng/tm/v238/p158
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :141
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024