Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Volume 282, Pages 181–194
DOI: https://doi.org/10.1134/S0371968513030151
(Mi tm3491)
 

This article is cited in 12 scientific papers (total in 12 papers)

Sevastyanov branching processes with non-homogeneous Poisson immigration

Kosto V. Mitova, Nikolay M. Yanevb

a Faculty of Aviation, Vasil Levski National Military University, Pleven, Bulgaria
b Department of Probability and Statistics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
References:
Abstract: Sevastyanov age-dependent branching processes allowing an immigration component are considered in the case when the moments of immigration form a non-homogeneous Poisson process with intensity $r(t)$. The asymptotic behavior of the expectation and of the probability of non-extinction is investigated in the critical case depending on the asymptotic rate of $r(t)$. Corresponding limit theorems are also proved using different types of normalization. Among them we obtained limiting distributions similar to the classical ones of Yaglom (1947) and Sevastyanov (1957) and also discovered new phenomena due to the non-homogeneity.
Received in January 2013
English version:
Proceedings of the Steklov Institute of Mathematics, 2013, Volume 282, Pages 172–185
DOI: https://doi.org/10.1134/S0081543813060151
Bibliographic databases:
Document Type: Article
UDC: 519.218.24
Language: English
Citation: Kosto V. Mitov, Nikolay M. Yanev, “Sevastyanov branching processes with non-homogeneous Poisson immigration”, Branching processes, random walks, and related problems, Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 282, MAIK Nauka/Interperiodica, Moscow, 2013, 181–194; Proc. Steklov Inst. Math., 282 (2013), 172–185
Citation in format AMSBIB
\Bibitem{MitYan13}
\by Kosto~V.~Mitov, Nikolay~M.~Yanev
\paper Sevastyanov branching processes with non-homogeneous Poisson immigration
\inbook Branching processes, random walks, and related problems
\bookinfo Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 282
\pages 181--194
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3491}
\crossref{https://doi.org/10.1134/S0371968513030151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308591}
\elib{https://elibrary.ru/item.asp?id=20280555}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 282
\pages 172--185
\crossref{https://doi.org/10.1134/S0081543813060151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325961800015}
\elib{https://elibrary.ru/item.asp?id=31751507}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885980399}
Linking options:
  • https://www.mathnet.ru/eng/tm3491
  • https://doi.org/10.1134/S0371968513030151
  • https://www.mathnet.ru/eng/tm/v282/p181
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024